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1. INTRODUCTION TO FINITE ELEMENT METHODS,
ALGORITHMS AND IMPLEMENTATIONS

1.1 Structured and unstructured meshes

The recent rapid development of solution algorithms in the field of computational
mechanics means that it it presently possible to attempt the numerical solution of a
wide range of practical problems. The essential pre-requisite to a solution process of
this type is the construction of an appropriate mesh to represent the computational
domain of interest. In this section, we will briefly outline two alternalive strategies
for accomplishing this task of mesh generation and make some observations about the
implications to the analyst arising from the choice of approach which is made. In the
discussion, we will assume, for brevity, that the mesh is to be produced for a two
dimensional domain.

In the most widely used approach [1,2], the domain is divided into a structured
assembly of quadrilateral cells. The structure in the mesh is apparent from the fact
that each interior nodal point is surrounded by exactly the same number of mesh
cells (or elements), as shown in figure 1.1. Note also that we can immediately
identify two directions within the mesh by associating a curvilinear coordinate
system (&,n) with the mesh lines. If we number the nodes consecutively along lines
of constant n, and so that the numbers increase as & increases, we can immediately
identify the nearest neighbours of any node J on the mesh, as shown in figure 1.2.
Generally, such grids are constructed by mapping the domain of interest into a
square and then constructing a rectangular mesh over the square. If the equation
itselt is also mapped, this grid can be used to obtain a solution, otherwise the inverse
mapping is applied to obtain the required mesh over the original domain. Various
approaches may be regarded as candidates for accomplishing the mapping, such as
conformal techniques, the use of differential equations or algebraic methods. All the
major discretisation procedures for the equations of fluid flow can normally be
implemented on meshes of this type. A major advantage to the computational fluid
dynamicist arising from the use of a structured mesh is that he can choose an
appropriate solution method from among the large number of algorithms which are
available. These algorithms have the advantage that they can normally be
implemented in a computationally efficient manner. A disadvantage is the fact that it
is not possible to guarantee an acceptable mesh by applying the mapping method, as
described above, to regions of general shape. This difficulty can be alleviated by
appropriately sub-dividing the computational domain into blocks and then producing
a grid by applying the mapping method to each block separately. This results in an
extremely powerful method [3], but problems can still be caused by the generation
ot elements of poor quality and by the elapsed lime necessary to produce a grid for
domains of extremely complex shape.

The alternative approach is to divide the computational domain into an unstructured
assembly of computational cells as illustrated in figure 1.1. The notable feature of an
unstructured mesh is that the number of cells surrounding a typical interior node of
the mesh is not necessarily constant. It will be apparent that quadrilateral cells
could again be used in this context, as shown in figure 1.3, but we will be
concentrating our attention upon the use of triangular meshes. The nodes and the
elements are now numbered and, 1o get the necessary information on the neighbours,
we slore the numbers of the nodes which belong to each element (see figure 1.4).
From the detail of a typical unstructured mesh shown in figure 1.1, it is apparent
that there is no concept of directionality within a mesh of this type and that,
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Figure 1.1 Structured and unstructured mesh discretization of a computational
domain.



Figure 1.2 Nearest neighbours of a node J in a structured mesh of n by m points
in the £,  direclions

Figure 1.3 An unstructured quadrilateral mesh.



therefore, solution techniques based upon this concept (e.g. ADI methods) will not be
directly applicable. The methods which are normally adopted to generate
unstructured triangular meshes are based upon either the Delaunay (4] or the
advancing front [5] approaches. Discretisation methods for the equations of fluid
flow which are based upon integral procedures, such as the finite volume or the
finite element method, are natural candidates for use with unstructured meshes. The
principal advantage of the unstructured approach is that it provides a very powerful
tool for discretising domains of complex shape [6,7], especially if triangles are used
in two dimensions and tetrahedra are used in three dimensions. In addition,
unstructured mesh methods naturally offer the possibility of incorporating
adaptivity [8]. Disadvantages which follow from adopting the unstructured grid
approach are that the number of alternative solution algorithms is currently rather
limited and that their computational implementation places large demands on both
computer memory and CPU [9]. Further, these algorithms are rather sensitive 1o
the quality of the grid which is being employed and so great care has to be taken in
the generation process.

1.2 Discretisation techniques

When an acceptable mesh has been obtained for the computational domain of interest,
the analyst is then faced with choosing a discretisation method. This will form the
basis of a suitable algorithm for solving the governing differential equation on this
mesh. The most widely used discretisation techniques are the finite ditference
method, the finite volume method and the finite element method [10]. We will
illustrate briefly the essentials of these three. approaches by considering the
application of each method to the solution of a problem of steady linear heat
conduction in a two dimensional region, Q, which is bounded by a closed curve, T

The temperature distribution T{x,y) will satisfy Laplace's equation

d°T 9T

8_x5+5ﬁ=0 in Q (1.1)

div(grad T) =

subject to appropriate boundary conditions. For convenience, we may assume here
that the boundary conditions are given in the form

T=g(xy) on T (1.2)
i.e. the value of the temperature is specified at all points of the boundary curve.

The Finite Difference Method

F'or the purposes of this section, it is sufficient to assume that equation (1.1) is lo
be solved on a structured square mesh, of the type shown in figure 1.5. We can adopt
a convenient coordinate system, such that a typical point on the grid has coordinates
(JA.KA). If we use the subscripts JK to denote an evaluation at this point, equation
(1.1) leads to the exact relationship
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Element Nodes

1 5 8 9
2 9 8 12
3 8 7 12
4 6 7 8
5 5 6 8
6 5 9 10
7 11 5 10
8 3 5 11
9 3 4 5
10 1 4 3
11 4 6 5
12 1 6 4
13 1 2 6
14 2 7 6

Figure 1.4 Conneclivity array for an unstructured triangular mesh.
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Figure 1.5 Struclured square mesh of constant mesh size A.



Using standard central difference representations for the second derivaiives, this
equation can be approximated for ail interior points as

T2V + Toak Tuke1-2T g+ Tk
J+1K Agégﬂ LK JK+1 A%K JK1=0 (1.4)

which is an equation coupling the values at the five mesh points illustrated in figure
1.6. Writing an equation of this type at each interior point on the grid and
incorporating the known values along the boundary, the resulting equation set can be
represented in a matrix form

KI-=t (1.5)

where K is a symmetric constant matrix, I is the vector of unknowns and { is the
force vector which contains information from the boundary conditions. This equation
system may be solved by using any suitable procedure. The important point to note
here is that the matrix system can be formed directly from the approximation of
equation (1.4). This leads to efficient computational implementations, with low
storage demands and high vectorisation possibilities.

The Fini | h

The finite volume and finite element methods can also be implemented on structured
grids. but we will assume here that we are to use these methods on a given
unstructured triangular grid (see figure 1.4). A possible finite volume
discretisalion for equation (1.1) follows from the requirement that this equation
should be satisfied in an integral sense over each cell e i.e.

2
Qe

where €, is the area of cell e. Using the divergence theorem, this equation may be
wriften as

aT
JBndr:O (1.7)
Ie

where 1°, denotes the boundary of cell e and n is the outward normal direction 1o this
boundary. If we associate the unknown T, with cell e, this equation can be
approximated as
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Figure 1.6 Computational stencil for Laplace's equation.
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Figure 1.7 Finite volume discretization



3
Tos-T
> " ) 5,0 = 0 (1.8)
S=1 es

where the summation extends over the three sides of the cell e, T is the unknown in
the other cell es which is adjacent to side s, 8, denotes the length of side s and Angg
is the projection onto the normal to side s of the distance between the centroids of the
cells e and es (see figure 1.7). When each cell in the mesh is considered in this way,
we are led again 10 a system of equations which can be written in the matrix form of
equation (1.5). Nole that a convenient data structure in this case would be to number
each cell side in the mesh and to store the numbers of the two cells which are
adjacent to each side. Equation (1.8) can then be formed by looping over the cell
sides and sending the appropriate (equal and opposite) contributions to the adjacent
elements. In this form, the conservation properties of the resulting scheme are
immediately apparent as the total contribution made by each interior side is zero.

Variational Formulations

Finally, we illustrate how the finite element method can be used to discretise
equation (1.1) on an unstruclured triangular grid. The starting point is a variational
formulation of the problem [11]. Let T denote the set of all functions T which satisfy
the problem boundary condition T = g(x,y) on T and let W denote the set of all
functions W which satisfy W = 0 on I". In addition, we shall see that the type of
variational formulation which is employed will place certain differentiability
conditions upon the members of these sels. A possible variational formulation for the
above problem could now be : find T in T such that

27
Q

for every W in w. The sets 7 and w are termed the trial function and the weighting
funclion sels respectively. It will be apparent that the integral appearing in equation
{(1.9) is valid mathematically provided that the trial functions have continuous first
derivatives, while the weighting functions may be discontinuous. It follows
immediately that the function T which salisfies this variational formulation will be
identically equal to the solution of the problem as posed classically in equations
(1.1) and (1.2).

An alternative, so-called weak, formulation can be obtained by using the divergence
theorem in equation (1.9) and applying the fact that each function W which is to be
considered will vanish on I'. The resulting formulation can be stated as : find T in T
such that

J {Q_T_ oW JdTIW

x ax * oy ay}dQ:O (1.10)

Q

for each W in . Note that the trial function set may now be widened, as equation
(1.10) requires only that the trial functions be continuous. At the same time,

10



stricter conditions need to be applied to the members of the weighting function set,
which must also now be continuous. Assuming that the actual solution is sufficiently
smooth so that the steps involved are mathematically valid, it is readily observed
that the above steps may be reversed and equation (1.9) regained. It follows that the
solution of the weak formulation will also be identical to the solution of the original
problem posed in equations (1.1) and (1.2).

Ihe Galerkin Method

The Galerkin method is a widely used approach for constructing an approximate
solution to a problem posed in a variational form [12]. We begin the process by
selecling a basis Ny, No, N, ....... for w. This means that each weighting function can
be expressed as a linear combination of these basis functions and we indicate this by
defining w by

w={W|W=a1N1+azN2+agN3+ .......... ,W=00nr} (111)

where a,, a, a,, ... denote arbitrary constants. Note that each N,in the basis must
satisfy the condition N; = 0 on I'. We can employ a trial function set which is closely
linked to v and is defined by

T={T|T=g+byNy+byNo+az;Ny+.......... ;T=gonT} (1.12)

where by, by, by, .... denote arbitrary constants. This set has been carefully
conslructed so that each member of the set satisfies the required conditions on I If
we define T, and W, as the subspaces of T and W respectively which are spanned
by the first p basis funclions i.e.

¥ P = ( T(p’ ' T(p) = g + b1N1+b2N2+b3N3+ ..... +bp N P; T(P) = g on r}
(1.13)
Wy = { W(p) | W(p) = 3Ny +aNo+a3N+ .. +ap Np. W(p) =0onr}

then the Galerkin method is to seek an approximate solution to the variational
formulation of equation (1.10) in the form : find T, in T, such that

( {QI@ IWip)  9T1p)dWip) } 40 = 0 (1.14)
. ax  ax dy  dy N '

Q
for each W, in W, . However, since Ny, Nj, N3, ....... . N forms a basis for W,

equation (1.14) can be replaced by the equivalent statement : find Ty, in T, such
that

[ {‘Wm dNy 9T aN,

x ot ay}d£z=o i=1.23 ., b (1.15)

Q
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Inserting the assumed form for the funclion T, from equation (1.13) gives

3 f{g&a_w_.( N, AN

3% ax * ‘a—y-—ay—}dﬂ b, =

K=1

ag dNy a_g_am}
f{ax ax + ay ay dQ K =1,2, 3, ...... . P

which can be written in the matrix form
Kb=1{ (1.17)

This equation can be solved to determine the unknown coefficients by, by, ...., b, and
so complete the approximation process. These unknowns only give information about
the value of the approximation at any point when they are combined as in equation
(1.13). Note that K is symmetric and will, in general, be a full matrix.

The Finite El Method

The Galerkin finite element method results from making a particular choice for the
basis functions in equations (1.11) and (1.12). Although more sophisticated
representations are possible, we will consider here only the case in which, given a
general grid of triangles, we place nodes at the vertices of each triangle and associate
an unknown T, and a piecewise linear shape function N; with each node J. In this case,
the shape functions are constructed (see figure 1.8) such that (a) N, takes the value
unity at node J and the value zero at all other nodes (b) N, varies linearly (c) N, is
only non-zero on the elements associated with node J. For notational purposes only,
it will be convenient to assume that the nodes have been numbered such that nodes 1
to p are interior nodes while nodes p+1 to q lie on the boundary. We define I's to be
the assembly of the straight sides in the mesh which join the boundary nodes, so that
I'. is an approximation to the exact boundary I'. The given function g(x,y) defined on
1" in equation (1.2) is approximated on I's by the function g5, constructed as

O(s) = i Ty Ny Ty = glx,y9) (1.18)
J=p+1

and this approximation is exact at each of the boundary nodes. We work with spaces,

of dimension p, defined by

"“‘) = { T(p) I T(p) = g(s) + T‘N1+T2N2+T3N3+ ....... +Tpr ) T(p) = g(s) on 'S}
(1.19)
")(P) = ( W(p) I W(p) = a1N|*aQN2+a3N3+ .......... + apr ’ W(P) =0on rs}

12



Figure 1.8 Shape function associated to node J
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where we have indicated in the definition of T, that the coefficient of N, is now the
value of T, at node J. The Galerkin procedure is followed exactly as above, with
equation (1.16) being replaced by the requirement that

P ([N 3Nk ayﬁ_@_x_}
&, f{a" ox * oy ay) 92 |Tk=
=lQ
(1.20)
: AN, AN amaﬂg}
K=§+ J{ax ax * 3y ay da [T« J=1,23 ..., p
This equation set can again be written in a matrix form
KL=t (1.21)

where T is now a vector of the unknown approximations to the nodal values of the
temperature and a typical entry in the matrix K is given by

9N, aNk 3&3&}
lK]JK=Qf {ax >t oy ay |99 (1.22)

To evaluate these entries, we make use of the local nature of the defined shape
functions and the result that the integral over Q is equal to the sum of the integrals
over the individual triangles Q. [12] i.e.

E
[t-yaa =3 [ ()00 (1.23)
1

Q =,

This means that the matrix K can be wriften as

E
K=Y Ke (1.24)

e=1

where the individual element matrices K¢ have typical entries

K]y J{@!“J‘T INK®  dN,® INk®
JK =

X ax *t dy oy dQ (1.25)

o,

Here Ny® has been used to indicate the value of the shape function N, on element e. We
note that the only shape functions which are non-zero over element e are those

14



associated with the nodes J, K, L of this element. This in turn means that there will
be only 9 non-zero entries in K® which will occur in those positions which are in
both rows J, K.L and in columns J, K, L. Explicit expressions for the shape functions
over element e are readily determined from the conditions which were used in their
definition. If

NJ9=AJ6+BJGX+CJGY (126)

where A~ |, B2, C,® are constants, it follows that

- - - X

The non-zero entries in the element matrix K¢ can be obtained by direct integration
eq.

1
[Kelk, = a0, {Bx® B e+ Cx2Cy°} (1.28)

With the contributions from a typical element computed in this fashion, it is then
possible 10 assemble the contributions from all the elements in the mesh, according
to equation (1.24) and thus to obtain the final form for K. The right hand side veclor
f in equation (1.21) can be similarly evaluated. The symmetry of K should be
apparent from equation (1.28) and it should also be observed that this will be a
sparse malrix.

A computer implementation of this method would follow identical lines, with the
mattix K being determined from a loop over the elements. As each element is
considered, the non-zero terms in its element matrix are determined from
expressions such as equation (1.28) and these are assembled into the correcl
locations in K, making use of the stored connectivity information, which gives the
nodes belonging 1o each element.

Optimality of the Galerkin Melhod

For a linear elliptic differential equation, of the type which has been considered
above, it is possible to prove that an approximate solution constructed via the
Galerkin method possesses a certain optimality property [t11]. To demonstrale this,
suppose that we have chosen a suilable sel of basis functions and a value for the
dimension p of the subspace to be considered. We know from equation (1.14) that the
Galerkin approximation will satisfy

J {Q.Tip) MWipy , 9T (p)0Wip) } 4Q = 0 (1.29)
g lox ox dy ay B '

for any W,y in W, As each W, is in W, we can deduce that each W, is also in I,

since W, is a subspace of . Thus, from equation (1.10) the exact solution T will
also satisty the equation

15



o) Wi
f{@IBW +3’Ia }dQ=0 {(1.30)
. ax  9x ay ody

Subtracting equation (1.29) from equation (1.30), we can deduce that the error ¢ =
T - T, in the Galerkin approximation satisfies

oe AW o, a_e_awm}
j{ax 3 * 3y ay da =0 (1.31)

for every W, in W, Now choose any other function Uy, from the trial function sel
T - The objective is to show that such a function will always be a worse
approximation to the exact solution, according to some measure, than the Galerkin
approximation. Define ’

E‘,=T'U(p)=T-T(p)+T(p)'U(p)=E+V(P) (132)

where

Vier = Tipy - Up) (1.33)

By direct substitution, it can be shown that

(T (5T e [ (BT 3T oo

Q
(1.34)

2 2
o [ Ne o Vel gg, [ M s g
q ax  dx dy dy X ay

From the construction of equation (1.33), V,, must be a member of the set W, and
so the second term on the right hand side vanishes, by equation (1.31). The third
term on the right hand side is strictly non-negative and so we deduce that

f { [%Ex"]z + [%Ey]z } szQf { [3&]2 : [g-i;]z } da (1.35)

Q
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Iintroducing the notation

- (BB Je e

Q

it can be seen that equation (1.35) can be written as

liewll = lle]] (1.37)

Since the function Uy, was arbitrarily chosen from the set T, we have thus
demonsitrated the optimality of the Galerkin approximation Ty among the set of
functions 7, according to the error measure defined in equation (1.36).

1.3 The Finite Element Method Applied to the Compressible Euler Equations

With the essentials of the finite element approach briefly outlined above, we can now
consider facing the more challenging problem of developing a finite element scheme
for the solution of the two dimensional compressible Euler equations. The
discretisation of the equations is to be accomplished using a mesh of linear triangular
elements. A Galerkin approach will again be applied, but the hyperbolic character of
the equation set means that optimality, in the sense of equation (1.37), can no longer
be established. The approach to be followed will employ the time dependent form of
the equations and steady state solutions will be computed by means of a false
transient. A finite difference method will be used to advance the solution in time,
which means that the variational formulation will be applied to the space dimensions
only, in exactly the same form as above.

The two dimensional equations governing compressible inviscid flow are considered
it the conservation form

Ad JE JF
()t + ax + ay = (1 38)
where the unknown vector | and the flux vectors E and F are given by
P 2pU pv
pu pu? + p puv
U - pv k- puv E- pvZ + p (1.39)
pE (pE + p)u. (pE + p)v

Here p. p and E denote the density, pressure and specific total energy of the fluid,
while 11 and v are the components of the fluid velocity vector in the x and y directions
respectively. The equation set is completed by the addition of the perfect gas equation
of sfate '



p=(r-1)p[E- 5u2 +v?)] (1.40)

where v is the ratio of the specific heats.
To develop a time-stepping scheme for equation (1.38), we consider a Taylor
expansion in time [13] in the form

2 [N+
" af au
ERFT

n+1 au

U =Q"+At§ (1.41)

where the superscript n denotes an evaluation at time t=t,, the timestep At = t,,, -
th.and t,,4 = 1, + 8 A1, 0 < 8 < 1. This equalion may be re-written, using equation
(1.38), to give

E  IE] i{a_ ), (&)
AL‘“"“{ax * ay} "2 lox (at)" 3y (at)
(1.42)

+1
where AU = u" - u". A solution algorithm can be produced by constructing a suitable
linearisation for the second order terms on the right hand side of this equation. A
straightforward linearisation [14] leads to the equation

AU - 9_12}13 {a— [A"A“'——a(anu) + AnB" 8____(ALL)] + o [B"A"‘—a(Au) + BrB" 8(_A__y___)_]}

ax ay ay ax ady
(1.43)
[«LE. «LF..]" A_tz{g.[ o a;] 2 [Bﬁ oE ]}
=AY Ayl 2 ax ax T ay) *ay (8x+ ay)
where
dE oE
A0 B= 40 (1.44)

and the approximations A™' = A" and B"+! = B" have been made.

Galerkin_Finile Element Approximalion

The problem of determining the AU which satisfies equation (1.43), over a domain
{2, can be put into a variational form by defining trial and weighting function sets as
before. It will be convenient to assume that the boundary values of U on I are
independent of time and that these values are already satisfied by Ur. Physical

18



boundaries such as solid walls require a different treatment which will not be
considered further here. Then we can define

={aUlal=0o0onr} WwW={W|W=00nT} {(1.45)
and seek, for each n, AU in T such that

Jw [ALL_ B_AZ_E {;X [A Ana(Au) . a_(%!)_]

[B"A" o(al) + BrBn" 3_(*1_3&:”1* At [BE + B_F__]" (1.46)

J ok
ax ay Ix ay

+ay

R B E ] e

for alt Wiin tv. A weak variational formulation may be produced by using the
divergence theorem. The variational statement then becomes : find, for each n, AU in

T such that

flw AU + BA' {‘M [AnAn»—a(:xu) + AnB" a“(ALL)]

ax ay
Q
3 A
)W{BnAnﬂ-—Q+ BB a(ALL)] ] d (1.47)
ay 0x
oF af_-J" AR (W . AW o OE af—}"
Mfw[ax+8y a2 -5 J{axA"*ayB Max * ay] 99
Q 4

We will assume that the spatial solution domain, Q, has been discretised using 3
noded linear triangular elements, with the interior nodes numbered from 1 1o p, and
define the sets

P = § Ay | AUy = Ny AU +Np Ao+ +Np AU: AU, = 0 on T)

(1.48)

(p) = { W(p) I W(p) = a1N1 +azN2 +..... +apr , W(p)‘: 0 on r}
where ay, a,. ..., &, are constants. The Galerkin approximation determines the values
ol the nodal unknowns AU, AU, ...... . AU, by inserting AUy, into the equation

(1.47) and satistying the resulting equation for each W, in W . When AU, has
been defermined, the solution is updated according to Ug,"™" = U™+ AU,
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An Explicit Time-Stepping Sct

If the value of 8 is set equal to zero in equation (1.47), the Galerkin statement takes
the form

d IE o]
jNJAu‘p, da = - AlfNJ [—5;(% %‘—m] do
Q po y

(1.49)

At2 INy aN, dEp JEqp ("
- T f{a_XA(p)"+ wﬂ(p)" Ix + ay dQ =0

fory =1,2, ... . p. Although Ep), Eqp). A(py and By, at time level n could be
expressed directly in terms of U, and the right hand side of this equation evaluated
by numerical integration, a convenient computational implementation is produced by
linearly interpolating E, and E,,, over each element and taking A, and By, to be
element-wise constant. The terms in equation (1.49) may now be evaluated exactly,
by assembling the contributions from individual elements, and the resulting set of
equations written in the form [15)

i[M]JK AUy = BHS, (1.50)
K=1

where
(M ]k =J N, N¢ dQ (1.51)

In the form of equation (1.50), the time-stepping scheme is implicit, as the
consistent mass matrix M is not diagonal. In transient simulations, this equation is
solved by explicit iteration [16]. For steady state problems, the simplification of
replacing the consistent mass matrix by the standard lumped (diagonal) matrix
[12], with non-zero diagonal entries [M_],, can be made, thus producing an explicit
scheme. This explicit scheme is identical to the one step Lax-Wendroff method [10]
when it is implemented on a mesh of linear elements in one dimension.

Artificial Dissipation

For the successful simulation of flows with steep gradients, the explicit scheme
described above needs the addition of an appropriate artificial viscosity model. The
standard approach is to smooth the computed solution at the end of each time step
before proceeding with the computation. The smoothing can be regarded as the
application of an explicit diffusion with a suitably defined diffusion coefficient. A
convenient method of achieving this effect follows from the observation that, on a
mesh of linear elements, there is a relatively simple way of approximating a
diffusion operator. At an interior node J on a mesh of linear elements in one
dimension [17],
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d
[(ML)'12(mE'mLE)U.E L = ;‘d%( h? d%(- )J (1.52)
E

where h{x) is the local mesh size. The summation in equation (1.52) represents the
operation of assembly of element values and mg, m g and Ug denote the element mass
matrix, element lumped mass matrix and element vector of nodal values of U
respeclively. By direct extension, on a general 2D mesh of linear elements, the
smoothing in the case of the Euler equations is accomplished by replacing the
computed nodal values U,"*" by smoothed values Us,™" according to

My Usy™" - U™ ") = D ke {Imelyk - [Myel) Uek™'  (1.53)

E

Here ke is a pressure-switched artificial diffusion coefficient, which is computed as
the mean of element nodal values k, defined according to

_ {Imelik - [Myelix) Rex
ko= C“g’ HImelok - [myelon) Rex | (1.54)

where C, is a user specified constant, pg is the vector of element nodal pressures and
| . | denotes that absolute values of the element contributions are assembled. The
coefficient k, lakes values ranging from 0 to 1 and it can be shown that k; = 1 when
the pressure has a local extremum at node J. In equations (1.53) and (1.54) the
summation extends over all elements E which belong 1o node J. The efiectiveness of
this artificial viscosity model, when it is applied in conjunction with the explicit
time stepping procedure outlined above, is illustrated in figure 1.9 which shows the
result of a computation of the steady flow past a circular cylinder, at a free stream
Mach number of 3. Further examples, including a two slep variant of the solution
algorithm, can be found in a number of publications [18,19].

A High Resolution Exiension

The easiest method of producing a scheme of higher resolution on a general
unstructured grid is to apply the flux corrected transport (FCT) ideas of Boris and
Book [20] and Zalesak [21]. In their notation, we identify the basic explicit scheme
with no added artificial viscosity as the higher order solution, while the basic
scheme plus the addition of a hefty amount of artificial viscosity is the lower order
solution. The low order scheme must have the property that it produces monotonic
solutions for the problem under investigation. By combining the two schemes, the
objective is 1o remove as much of the artificial viscosity as possible, while still
maintaining monotonicity. This is achieved by limiting the contributions made by the
individual elements to the amount of added antificial viscosity. The firsi triangular
arid implernentation of these ideas was made by Parrott and Christie [22], in the
context of a single transport equation, and applications to the Euler equations have
also been made [23,24]. A demonstration of the effectiveness of the procedure is
given in fiqure 1.10, which shows the results produced when the method is applied to
the solution of transport in a rotational velocity field. In figure 1.10a we see the
initial_concentration, which takes the form of a circular cylinder with a cut-out. In
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Figure 1.9 External flow past a circular cylinder (Mo = 3)
(a) Enlargement of the mesh near the cylinder
(b) Convergence curve of the L, norm of the density residual
(c), (d) Contours and wall plots of the Mach number

(e), (f) Contours and wall plots of the pressure coefficient
(g) Flow detail behind the cylinder
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Figure 1.10 FCT algorithm
(a) !nitial solution

(b) Solution after 628 timesteps (1/4 revolution
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figure 1.10b we show the computed profile after 628 time steps (ope quarter
rotation) of the FCT algorithm. It is observed from the results that accuracy of this
scheme compares well with more costly Riemann-solver based schemes.

An_Implicit Time-Stepping_Scheme

If a value of 0 other than zero in used in equation (1.47), the Galerkin statement
leads to an implicit procedure [14] of the form

i[l-l.m AUk =RHS, (1.55)

K=1

where L can be expressed as

L=M+0K (1.56)

For computational efficiency, in steady state simulations, the simplification of
neglecting the cross derivative terms in the construction of K is generally made and
this does not seriously affect the convergence behaviour of the method. Schemes of
this type appear to possess certain desirable features e.g. it may be possible to apply
them in the simulation of transonic flows without the necessity for introducing
artificial diffusion [25]. As the identification of appropriate smoothing mechanisms
for elements which are higher than linear in order is still an unsolved problem, this
approach would then allow the possibility of producing an algorithm which could be
implemented on quadratic elements. This would certainly have associated accuracy
benefits on general grids.

However, although the direct solution of the equation system (1.55) can be
contemplated for certain two dimensional flows, efficient iterative techniques are
needed it an implicit approach is to be adopted for any realistic three dimensional
simulation. lterative strategies based upon the use of line relaxation have met with
certain success within the context of finite difference methods on structured grids
[10]). On such grids, the grid lines themselves can serve as appropriate lines for the
relaxation process. To describe such a process, it is useful to introduce a
renumbering operator 9 associated to a line such that 9(lJ) denotes the vector of
nodal unknowns re-arranged in the order implied by the line. The equation system
(1.55) is then written as

immmw‘ 9(AUk) = 9(RHS.) (1.57)

K=1

which leads to a new equation system of the form

p
D IL 1k AUS = BHS; (1.58)
J=1
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If the matrix L™ is now decomposed as

- *

L =D" + (L

. »

-D7) (1.59)

where D" is the block tri-diagonal of L*, this would allow the use of the relaxation
scheme

P
> D Iy AULE) = BHS;- f, (L7 Juk - [D Ty ) AU SO
K=1 K=1
(1.60)

where Al is taken to be the last computed increment and r is the iteration count.
A possible two dimensional implementation would therefore use the two families of
mesh lines, with one iteration on each line every timestep. The block tri-diagonal
malrices D” can be factorised every timestep or there is the possibility of using the
same faclors for several iterations. A further refinement would be the incorporation
of a hne search minimisation.

On unstructured triangular grids, the identification of suitable lines, for use with a
line relaxation scheme of this type, is not immediate. Recently [26], it has been
shown that it is possible to employ a rather simple mesh processing algorithm to
accomplish this task.

An_Algorithm for Constructing Lines in an Unstructured Triangular Mesh

Here we describe a general procedure for constructing a line (or lines) through a
general triangular mesh which passes through each node of the mesh once only. The
elements, nodes and sides in the mesh are numbered. The algorithm to be described
will then make use of the following conneclivity arrays, which need to be determined
before the process begins:

IEP(IN=1:3;1E=1:NE) The three nodes of element 1E.
IEE(JF=1:3;1E=1:NE) The three elements sharing the sides of element 1E.
TES(1S=1:3;1E=1:NE) The three sides of element 1E.

In addition, the following arrays will be used during the construction process:

I.LPM {1 :NP) Node marker.
ILEM(1:NE) Element marker.
1.5M (1 :NS) Side marker.

and a list 1,sE, which is initially empty (NLsE=0), which contains the so-called
active elements, in ascending order of a specified key variable . The elements in the
list are kept in a heap data structure. Given a prescribed direction n, the recursive
algorithm proceeds as follows:

1.- Set LPM(1:NP) = O
Set LEM(1:NE) = 0
Set LSM(1:NSy = 0
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2 .- Select any element as a starling element 1E.

3. Let 1pi, 1Siand 1Eifori = 1:3bethe three points, sides and
surrounding elements of this element IE.

IF(LPM(IPi) # 1 forany i = 1:3) THEN
FOR i = 1:3 DO

LSM(ISi) = LSM(ISi) + 1
LPM(IPi) = 1
IF(LEM(IEi) = 0) THEN

LEM(IEi) =1
Insert element 1Ei into LSE according to KEYi
NLSE = NLSE+1
ENDF
ENDDO
ENDW

4.- Select anew element IE

IF(NLSE # 0) THEN

NLSE = NLSE-1

1IE = LSE(1)

GOTO 3
B.SE

End process. The sides IS for which LsM(15) = 1 form the line.
ENDIF

in the above KEYi is evaluated as the absolute value of the scalar product between p
and the unit vector in the direction joining the centroids of elements 1E and IEi.

The operation of this algorithm is illustraled by considering the mesh of 18
triangular elements with 16 nodes shown in figure 1.11a. In this example direction-
ality is not taken into account, which means that elements are inserted into the list
L.sE without any directional preference. Starling from any element e.g. element 11,
the side marker for sides 8-9, 9-11 and 11-8 is set to 1. At this stage, the line
consists of these three sides. The node marker for nodes 8, 9 and 11 is set 1o one and
the adjacent elements 10, 12 and 6 are marked and inserted into LSE. NLSE iS now
equal to 3. The first element in LSE, which is element 10, is selected and, as one of
its points is not marked, the marker of its sides is incremented by one. This means
that the common side with element 11, i.e side 11-8, is deleted from the current
line and the sides 7-8 and 11-7 are added to the line. The marker for node 7 is sel
to one and the unmarked adjacent elements 3 and 9 are marked and inserted into LSE.
The situation is then as shown in figure 1.11b. The procedure is continued, with the
next slage being illustrated in figure 1.11c, until all the elements have been
considered, i.e. NLSE is equal to zero. At this point, a line will have been constructed
which passes through each node in the grid once and only once, as shown in figure
1.11d.

When the above algorithm is applied to the triangular mesh shown in figure 1.12a, it
produces the lines shown in figures 1.12b and 1.12c, when two directions at right
angles lo each other are prescribed.

An example is given which illustrates the numerical performance of the fully

implicit algorithm of equation (1.55) when the solution is obtained via the
relaxation procedure of equation (1.60). The example consists of an inviscid flow
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Figure 1.11 The construction of a relaxation line on an unstructured mesh

showing (a) starting line (b) line after one stage (c) line after two
stages (d) final line.
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over 2 NACA0012 airfoil with a free stream Mach number of 0.85 and 1° angle of
attack of one degree. The unstruclured triangular mesh employed consists of 8378
elements and 4292 points and a detail of the mesh is given in figure 1.13a. Details of
the two lines used for the line relaxation procedure are shown in figures 1.13b and
1.13c. The computed steady state pressure contours are shown in figure 1.13d. The
convergence behaviour of the implicit procedure is compared with that of the ex-
plicit approach of equation (1.50) in figure 1.13e.

29



2. GEOMETRY MODELLING

The problem of producing an unstructured mesh over a general computational domain
will now be addressed. The boundary of the domain to be discretised needs to be
represented in a suitable manner before the generation procedure can start. If the
automatic discretisation of an arbitrary domain is to be achieved, the mathematical
description of the domain topology ought to possess the greatest possible generality.
The computer implementation of this description must provide means for
automatically computing any geomelrical quantity relevant to the generation
procedure. Solid modelling provides [27] the most general up-to-date set of
methods for the computational representation and analysis of general shapes
matching the above requirements.

In this section we give a brief description of the geometry modelling sirategy that we
employ. More sophisticated representations giving more accurate definitions as well
as easing the task of performing quick geometry modifications could be used [28].

In the planar two dimensional case, the boundary is represented by closed loops of
orientated composite cubic spline curves [28]. For simply connected domains these
boundary curves are orientated in a counterclockwise sense while for multiply-
connected regions the exterior boundary curves are given a counter-clockwise
orientation and all the interior boundary curves are orientaled in a clockwise sense
(tigure 2.1),

In three dimensions, the domain to be discretised is viewed as a region bounded by
surfaces which intersecl along curves. The portions of these curves and surfaces
needed to define the three dimensional domain of interest are called curve and surface
components respectively. Figure 2.2 shows the decomposition of the boundary of a
three dimensional domain into its surface and curve components. The approximate
representation ot the boundary components is accomplished by means of composite
curves and surfaces [28]. In addition, boundary curves and surfaces are orientated
(see figure 2.3). This is important in the generating process as it is used to define
the location of the region that is to be discretised. The orientation of a boundary
surface is defined by the direction of the inward normal. The orientation of the
boundary curves is defined with respect to the boundary surfaces which contain
them. Each boundary curve will be common to two boundary surfaces and will have
opposite orientations with respect to each of them. An example of the approximated
geomelry for a surface component and its corresponding curve components is
displayed in figure 2.4. It can be observed that the boundaries of the interpolated
composite surface can be arbitrary and are not required to coincide with those of the
surface component.

2.1 Curve Representation

The parametric definition of a curve consists of a piecewise interpolation of cubic
polynomials through an ordered set of data points. The order in which these points
are given defines the orientation. In the Ferguson representation [29], each cubic
polynomial is expressed, in terms of the position and tangent vectors at the two end
points, as
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Figure 2.1 Boundary orientation for a two dimensional domain.
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Figure 2.2  Decomposition of the boundary of a three dimensional domain into its
surface and curve components.
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Orientation of the boundary components in three dimensions.

Figure 2.3
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Figure 2.4  Approximated geometry for a surface component.

r(1)
(2)
rvy={1vvZvd) C [:},,:l

12

0<v<i

Figure 2.5 Interpolation of a piecewise cubic spline through a set of data points.
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i
2
vy ={tvvivi} C {n O<ved (2.1)

1

where (M and (2 are the coordinates of the end points of the segment, {(V) and {2 are
their respective tangents and C is a constant matrix given by

1 0 0 O
0 0o t o
C=1.3 3.2 1 (2.2)
2 -2 1 1
The tangent to the curve is computed according to
, dg(v)
v) = r'tv) = —4 (2.3)

The number of data poirts, and their spatial distribution, should be given in such a
manner thal the interpolated curve accurately approximates the intersection of the
corresponding surface components. The interpolation problem, which is illustrated
in figure 2.5, consists of fitting a parametric spline, defined in a piecewise manner,
through a set of n points [;; j=1,...,n. At interior points, continuity of siopes is
guaranteed for any choice of the tangent vectors, provided that a unique tangent
vector is used for the definition of the two adjacent cubic segments. However, by
employing a simple procedure [28], these vectors can be determined so that
conlinuity of curvature is achieved throughout the interpolated curve. At the two end
points, zero curvature is assumed. Note that the expressions given above are valid in
two and three dimensions. The only difference in the two cases being the number of
components of the vectors [ and {.

2.2 Surface Representation

The mathemalical representation of a surface is obtained by interpolating a
composite surtace, made up of quadrilateral patches, through a topologically
reclangular set of data points f; j=1,....,m ; k=1,..n (see figure 2.6). Two families
of parametric lines are oblained by interpolating spline curves, first through the
points of constant j and then through the points of constant k. The procedure used for
interpolating each spline curve is that described in the previous section. The
mathematical expression for every quadrilateral surface palch is given, in terms of
the four cubic curves that form its boundary and the twist vector at the four corner
points, as

r_(‘) L(‘) Lw(” Lw(‘)
f2y (3 g2y ¢
va(1) .[.'V(A) LlVW“, LIVW(‘) w2
Lrv(z) va(a)Lva(z)f.vVW(J) WS

E—A

(2.4)

O<v<st; 0<swgd
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Figure 2.6  Interpolation of a composite surface through a set of data points.
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where C is the matrix previously defined in (2.2), CT is its transpose, and the
comma denotes partial differentiation, i.e.,

L or 32r

Lv=5v ' Lw=3w ' Lw= 55w (2.5)

Here the notation employed to denote the corner points of the patch is

(M =r(00); r@=r(,0; B =yg11), 49=1(0,1) (2.6)

This representation uses a Hermite interpolation between opposite boundaries of the
patch [30]. The twist vectors (f.,w)jk at the corner points are computed so that
overall second order continuity is achieved on the interpolated surface. The
implementation details of this algorithm can be found in [31). For convenience,
global parametric coordinates u' and u? are defined. For the patch (j,k) these
coordinates are related to the local patch coordinates v and w accordingto u' = v + j
-1 and v2 = w + k -1. In this way, a global mapping f(u',u?) is established between
the rectangular region in the parametric plane defirned by 0 <u'<p;0< u2< q and
the tensor product surface. The orientation of the surface is defined by specifying the
outward normal which points towards the region to be discretised.
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3. UNSTRUCTURED MESH GENERATION BY THE ADVANCING FRONT
METHOD

3.1 The advancing front technique

The algorithmic procedure to be described for the mesh generation is based upon the
method originally proposed in [5] for two dimensions and then extended to three
dimensions in [7,18]). The advocated approach is regarded as a generalization of the
advancing front technique [32,33] with the distinctive feature that elements, i.e.
triangles or tetrahedra, and points are generated simultaneously. This enables the
generalion of elements of variable size and stretching and differs from the approach
followed in tetrahedral generators which are based upon Delaunay concepts [4,34],
which generally connect grid points which have already been distributed in space.

The generation problem consists of subdividing an arbitrarily complex domain into a
consislent assembly of elements. The consistency of the generated mesh is guaranteed
if the generaled elements cover the entire domain and the intersection between
elements occurs only on common points, sides or triangular faces in the three
dimensional case. The final mesh is constructed in a bottom-up manner. The process
slarts by discretising each boundary curve. Nodes are placed on the boundary curve
components and then contiguous nodes are joined with straight line segments. in later
slages of the generation process, these segments will become sides of some triangles.
The length of these segments must therefore, be consistent with the desired local
distribution of mesh size. This operation is repeated for each boundary curve in
turn.

The next stage consists of generating triangular planar faces. For each two
dimensional region or surface to be discretised, all the edges produced when
discrelising its boundary curves are assembled into the so called initial front. The
relative oriemation of the curve components with respect to the surface must be
taken into account in order to give the correct orientation to the sides in the initial
front. The front is a dynamic data structure which changes continuously during the
generation process. At any given time, the front contains the set of all the sides
which are currenlly available to form a triangular face. A side is selected from the
front and a triangular element is generated. This may involve creating a new node or
simply connecting lo an existing one. After the triangle has been generated, the front
is updated and the generation proceeds until the front is empty. Figure 3.1
ilustrales the idea of the advancing front technique for a circular planar domain by
showing the initial front and the form of the mesh at various stages during the
generation process. The size and shape of the generated triangles must be consistent
with the local desired size and shape of the final mesh. In the three dimensional case,
these friangles will become faces of the tetrahedra to be generated later.

For the generation of tetrahedra the advancing front procedure is taken one step
further. The front is now made up of the triangular faces which are available to form
a tetrahedron. The initial front is obtained by assembling the triangulations of the
boundary surtaces. Nodes and elements will be simultaneously created. When forming
a new tetrahedron, the three nodes belonging to a triangular face from the front are
connecled either 1o an existing node or to a new node. After generating a tetrahedron,
the front is updated. The generation procedure is completed when the number of
triangles in the front is zero.
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Figure 3.1 The advancing front technique. Different stages during the
triangulation process.



3.2 Characterisation of the mesh: mesh parameters

The geometrical characleristics of a general mesh are locally defined in terms of
certain mesh parameters. If N (=2 or 3), is the number of dimensions then, the
parameters used are a set of N mutually orthogonal directions q;; i=1, ... N,and N
associated element sizes §;; i=1, ... N (see figure 3.2). Thus, at a certain point, it all
N element sizes are equal, the mesh in the vicinity of that point will consist of
approximately equilateral elements. To aid the mesh generation procedure, a
transformation T which is a function of g and &; is defined. This transformation is
represented by a symmetric N x N matrix and maps the physical space onto a space in
which elements, in the neighbourhood of the point being considered, will be
approximately equilateral with unit average size. This new space will be referred to
as the normalised space. For a general mesh this transformation will be a function of
position. The transformation T is the result of superimposing N scaling operations
with factors 1/8;in each g, direction. Thus

N
T(gi.8i)= 2

1
= T wi® g (3.1)
i=1

di

where @ denotes the tensor product of two vectors. The effect of this transformation
in two dimensions is illustrated in figure 3.3 for the case of constant mesh
parameters throughout the domain.

3.3 Mesh Control: The Background Mesh

The inclusion of adequate mesh control is a key ingredient in ensuring the generation
of a mesh of the desired form. Control over the characteristics is obtained by the
specification of a spatial distribution of mesh parameters by means of a background
mesh. The background mesh is used for interpolation purposes only and is made up of
triangles in two dimensions and tetrahedra in three dimensions. Values of g and §;,
and hence T, are defined at the nodes of the background mesh. At any point within an
element of the background grid, the transformation T is computed by linearly
interpolating its components from the element nodal values. The background mesh
employed must cover the region to be discretised (see figure 3.4). In the generation
of an initial mesh for the analysis of a particular problem, the background mesh will
usually consist of a small number of elements. The generation of the background
mesh can in this case be accomplished without resorting to sophisticated procedures
e.g. a background mesh consisting of a single element can be used to impose the
requirement of linear or constant spacing and stretching through the computational
domain. The generation process is always carried out in the normalised space. The
transformation T is repeatedly used to transform regions in the physical space into
regions in the normalised space. In this way the process is greatly simplified, as the
desired size for a side, triangle or tetrahedra in this space is always unity. After the
element has been generated, the coordinates of the newly created point, if any, are
transformed back to the physical space using the inverse transformation. The effect
of prescribing a variable mesh spacing and stretching is illustrated in figure 3.5 for
a reclangular domain and using a background grid consisting of two triangular
elements.
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Figure 3.2

(a)

(b)

Characterisation of the mesh.

Mesh parameters: (a) In two dimensions.
(b) In three dimensions.
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Figure 3.4  Specification of a spatial distribution of mesh parameters.
Background mesh.
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3.4 Curve Discretisation

The discretisation of the boundary curve components is achieved by positioning nodes
along the curve according to a spacing dictated by the local value of the mesh
parameters. Consecutive points are joined by straight lines to form sides. In order to
determine the position and number of nodes to be created on each curve component,
the following steps are followed:

i} Subdivide recursively each cubic segment into smaller cubic segments until
their length is smaller than a certain prescribed value. A safe choice for this
value is the minimum spacing specified in the background mesh but often,
considerably larger values can be taken. The length of each cubic segment is
computed numerically. When subdividing a cubic segment, the position and
tangent vectors corresponding to the new data points can be found directly from
the original definition of the segment.

ii) For all the data points E,; j=1,....n (i.e. those used to define the curve and
those created to satisfy the maximum length criterion), interpolate from the
background mesh the coefficients of the transformation T;and transform the

position and tangent vectors i.e. Ei =T, [and ij = Tj 1, The new position and

tangent vectors [, {;; j=1....,n, define a spline curve which can be interpreted as
the image of the original curve component in the normalised space. It must be
noted that because of the approximate nature of this procedure, the new curve
will in general have discontinuities of curvature even though the curvature of the
original curve varies continuously.

i) Compute the length of the curve in the normalised space and subdivide it into
segments of approximately unit length. For each newly created point, caiculate
the cubic segment in which it is contained and its parametric coordinate. This
information is used to determine the coordinates of the new nodes in the physical
space, using the curve component definition.

3.5 Triangle generation in two dimensional domains.

The friangle generation algorithm utilises the concept of a generation front. At the
start of the process the front consists of the sequence of straight line segments which
connect consecutive boundary nodes. During the generation process, any straight line
segment which is available to form an element side is termed active, whereas any
segment which is no longer active is removed from the front. Thus while the domain
boundary will remain unchanged, the generation front changes continuously and
needs to be updated whenever a new element is formed. This updating process is
illustrated in figure 3.6.

In the process of generating a new triangle the following steps are involved (figure
3.7):

i) Select a side AB of the front to be used as a base for the triangle 1o be

generated. Here, the criterion is to choose the shortest side. This is especially
advantageous when generating irregular meshes.
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ii) Interpolate from the background grid the transformation T at the ceptre of the
side M and apply it 1o the nodes in the front which are relevant to the
triangulation. In our implementation we define the relevant points to be all those
which lie inside the circle of centre M and radius three times the length of the

side being considered. Let A ﬁ andﬂd denote the positions in the normalised space
of the points A, B and M respectively.

iii) Determine, in the normalised space, the ideal position B, for the vertex of
the triangular element. The point E, is located on the line perpendicular to the
side that passes through the point §1 and at a distance 8, from the points A and 8.

The direction in which P, is generated is determined by the orientation of the
side. The value 8, is chosen according to:

1 if 0.55L <1 <2-L
5, =9 0.55"L it 0.55:L < 1 (3.2)
2L if 1> 2-L

where L is the distance between points A and B. Only in situations where the side
AB happens to have characteristics very different from those specified by the
background mesh will the value of 8, be different from unity. However, the above
inequalities must be taken into account to ensure geometrical compatibility.
Expression (3.2) is purely empirical and different inequalities could be devised
to serve the same purpose.

iv) Select other possible candidates for the vertex and order them in a list. Two

lypes of points are considered viz. (a) all the nodes Q1,Q2 ... in the current
generation front which are, in the normalised space, interior to a circle with

centre E, and radius r = 8,, and (b) the set of points E, fg, generated along the
height E‘,M. For each point Qi. construct the circle with centre Q,. on the line
defined by points £, and M and which passes through the points Q;, A and B. The
position of the centres Qi. of these circles on the line E,EA defines an ordering of
the the Qipoims. A list is created which contains all the Qi points with the

furthest point from ]5_1 appearing at the head of list. The points E, Er, are added
at the end of this list.

v) Select the best connecling point. This is the first point in the ordered list
which gives a consistent triangle. Consistency is guaranteed by ensuring that
none of the newly created sides intersects with any of the existing sides in the
front.

vi) Finally, if a new node is created, its coordinates in the physical space are
obtained by using the inverse transformation T-'.

vii) Store the new triangle and update the front by adding/removing the relevant
sides.
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This mesh generation procedure is schematically presented in the diagram shown in
figure 3.8

Mesh quality enhancement

In order to enhance the quality of the generated mesh, two post-processing
procedures are applied. These procedures, which are local in nature, do not alter the
total number of points or elements in the mesh.

Diagonal swapping.- This changes the connectivities among nodes in the mesh
without altering their position. This process requires a loop over all the
element sides excluding those sides on the boundary. For each side AB (figure
3.9) common to the triangles ABC and ADB one considers the possibility of
swapping AB by CD, thus replacing the two triangles ABC and ADB by the
triangles ADC and BCD. The swapping is performed if a prescribed regularity
criterion is satisfied better by the new configuration than by the existing one.
in our implementation, the swapping operation is performed if the minimum
angle occuring in the new configuration is larger than in the original one.

Mesh smoothing.- This alters the positions of the interior nodes without
changing the topology of the mesh. The element sides are considered as springs
of sliffness proportional to the length of the side. The nodes are moved until
the spring system is in equilibrium. The equilibrium positions are found by
iteration. Each iteration amounts to performing a loop over the interior
points and moving their coordinates to coincide with those of the centroid of
the neighbouring points. Usually three to five iterations are performed.

The combined application of these two post-processing algorithms is found to be very
effective in improving the smoothness and regularity of the generated meshes.

3.6 Surface Discretisation.

The method followed for the triangulation of the surface components is an extension
of the mesh generation procedure for planar domains described above. The
discretisation of each surface component is accomplished by generating a two
dimensional mesh of triangles in the parametric plane (u',u2) and then using the
mapping r(u',u?) defined in section 2.2. This mapping establishes a one to one
correspondence between the boundary surface component and a region on the
parametric plane (u',u?) (figure 3.10). Thus, a consistent triangular mesh in the
parametric plane will be transformed, by the mapping r(u',u?), info a valid
triangulation of the surface component. The construction of the triangular mesh in
the parameter plane (u',u?) using the two dimensional mesh generator, requires the
determination of an appropriate spatial distribution of the two dimensional mesh
parameters. These consist of a set of two mutually orthogonal directions g;*; i=1, 2,
and two associated element sizes §;*;i=1, 2.

The two dimensional mesh parameters in the (u',u?) plane can be evaluated from the
spatial distribution of the three dimensional mesh parameters and the distortion and
stretching introduced by the mapping. To illustrate this process, consider a point P*
in the parametric plane of coordinates (u'P,u2f) where the values of the mesh
parameters &, qi‘; i=1,2 are to be computed. Its image on the surface will be the
point P = r(u'? ,u2P). The transformation between the physical space and the
normalised space at this point T, can be obtained by direct interpolation from the
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background mesh. A new mapping, valid in the neighbourhood of point P, can now be
defined between the parametric plane (u',u2) and the normalised space as

R(u',u?) = Tp (ut,u?) (3.3)

A curve in the parametric plane passing through point P* and with unit tangent
vector B = (B'.p2) at this point, is transformed by the above mapping into a curve in
the normalised space passing through the point Tp P. The arc length parameters ds

and d{, along the original and transformed curves respectively, are related by the
expression [35]

2 3R 0R
(d5)2={ I 50 g BB (09)? (3 4)
=1
Assuming that this relation between the arc length parameters also holds for the
spacings, we can compute the spacing 8p along the direction B in the parameter plane

as

2 9B 3
83=\/ oz 5%3%&'3' (3.5)

ij=1

The Iwo dimensional mesh parameters gj°, 5;*i=1, 2 are determined from the
directions in which 8 attains an extremum. This reduces to finding the eigenvalues
and eigenveclors of a symmetric 2 x 2 matrix.

To form the initial front, the (u',u?) coordinates of the nodes already generated on
the boundary curve components have to be computed. As the mapping r(u',u?) cannot
be inverted analytically, the coordinates (u',u2) of such points are found
numerically by using a direct iteration procedure [31].

3.7 Generation of Tetrahedra.

The starting point for the discretisation of the three dimensional domain into
tetrahedra is the formation of an initial generation front. The initial front is the set
of oriented triangles which constilutes the discretised boundary of the domain and is
formed by assembling the discretised boundary surface components. The order in
which the nodes of these triangles are given defines the orientation, which is the
same as that of the corresponding boundary surface component. The algorithm for
generating tetrahedra is analogous to that described above for the generalion of
Iriangles (see figure 3.8). However, in the three dimensional case the range of
possible options at each stage is much wider and the number of geometrical
operatlions involved increases considerably. Thus, the ability of the method to
produce a mesh and the efficiency of its implementation relies heavily upon the type
of strategy selected. The generation of a generic tetrahedral element involves the
following steps (figure 3.11): ‘
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i} Select a triangular face ABC from the front to be a base for the tetrahedron 1o
be generated. In principle, any face could be chosen, but we have found it to be
advantageous in practice to consider the smallest faces first. For this purpose,
the size of the face is defined in terms of the size of its shortest height.

ii) Interpolate from the background grid the transformation T at the centroid of
the face M and apply it to the nodes in the front which are relevant to the
triangulation. In our implementation, we define the relevant points to be those
which lie inside the sphere of centre M with radius equal to three times the value

of the maximum dimension of the face being considered. Let A é_ é and Mdenote
the positions in the normalised space of the points A, B, C and M respectively.

iii) Determine, in the transformed space, the ideal position £, for the vertex of
the tetrahedral element. The point P, lies on the line which passes through the
point M and which is perpendicular to the face. The direction in which E, is

generated is determined by the orientation of the face. The location of é, is
computed so that the average length of the three newly created sides which join

point B with points A, 8 and § is unity. For faces whose size In the parametric
ptane is very different from unity, this step may have to be modified, as In
expression (3.2), to ensure geometrical compalibility. However, such cases

rarely occur in practice. Let 8, be the maximum of the distances between point ﬁ,
and points A, 8 and C.

iv) Select other possible candidates for the vertex and order them in a list. Two

types of points are considered viz. (a) all the nodes Q,,Qz, ... in the current
generation front which are, in the normalised space, interior to a sphere with

centre &1 and radius r = 8§, and (b) a new set of points E, E—, generated along
the height P+M. Consider the set of points A, B and € and denote by ﬁ the member
of this set which is furthest away from M. For each point Q;, construct the sphere
with centre Qi on the line defined by points E and ﬂd and which passes through
point Q; and D. The position of the centres Q, of these spheres on the line E1M
defines an ordering of the the Qi points with the furthest point from E1 appearing
at the head of list. The points P,,..., P5 are added at the end of this list.

v) Selecl the best connecting point. This is the first point in the ordered list
which gives a consistent tetrahedron. Consistency is guaranteed by ensuring that
none of the newly created sides intersects with any of the existing faces in the
front, and that none of the existing sides in the front intersect with any of the
newly created faces.

vi) If a new node is created, its coordinales in the physical space are obtained by
using the inverse transformation T-1.

vii) Store the new triangle and update the front by adding/removing the
necessary sides. :
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3.8 Mesh quality assessment.

Any discussion of mesh quality should be intimately related to the form of the
solulion we are trying to represent on that mesh. Two factors need to be considered
here:

i) Determination of the characteristics of the optimal mesh for the problem at
hand. This introduces the concept of adaptivity and lhis aspect is considered in
section 5.

i) Assessment on how well the generated mesh meets the requirements specified
by the mesh parameters. This assessment can be made by examining the generated
mesh and determining the statistical distribution of certain indicators. For
example in figure 3.12 we have chosen as indicators the number of elements
around a side, the magnitude of the element dihedral angles and the length of the
side. These indicalors are compared with optimal values i.e. those of a regular
tetrahedron which has the exact dimensions specified by the mesh parameters.

3.9 Application examples

Mulli-component_ airfoil

A two dimensional discretisation of the domain around a four component airfoil in
landing configuration is shown in figure 3.13. The background mesh employed for the
generation, consisting of a few elements only, has been superposed on the generated
mesh. The mesh in the vicinity of the airfoils is nearly of constant size and varies
rapidly away from the airfoils. Very littie distortion in the triangles is observed
even though large variations in mesh size occur.

Generic_fighler_configuration

In computational aerodynamics, a problem of current interest is the prediction of the
inviscid flowfield about complete aircraft configurations. The problem considered
here is the simulation of the flow past a generic fighter with canard, 70-20 cranked
delta wing, vertical fin and engine inlel. This same configuration has been studied
previously using an algebraic grid generation approach [36]. Due to the symmetry
of the problem only half of the fighter is modelied. Figure 3.14(a) shows the
geometry definition of the computational domain. The background mesh employed is
ilustrated in figure 3.14(b). The curve components, defined in terms of cubic
splines and the discretisation of these components Is displayed in figure 3.14(c). The
individual surface components are described by tensor product surfaces and the
surface discretisation is illustrated in figure 3.14(d). An intermediate stage during
the tetrahedra generation process is displayed in figure 3.14(e). The final mesh
consisted of 76,522 tetrahedra and included a full simulation of the engine infet.

opace shullle configuration

The geomelry considered is that of HERMES like space shuflie. In figure 3.15(a) the
surface definition for halt of the model which contained 13 surface components and
29 curve components is shown. Two views of the triangulated surface are displayed
in figure 3.15(h). The triangulation consisted of 5,776 elements of nearly constant
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size. The three dimensional domain was filed in with 87,896 tetrahedra of
increasing size away from the body.

Boeing 747_in_landing configuration

The problem considered in this section is the subsonic flow over a Boeing 747
aircraft. The leading edge slats and trailing flaps in the wing are deployed in a landing
configuration. The flaps are detached from the wing. This means that the generator is
required 1o mesh the region between wing and flaps. For this reason the generation of
struclured grids for this type of configuration presenls severe problems. The
geometrical definition of the aircraft by means of tensor product surfaces is shown
in figure 3.16(a). Due 1o the symmetry of the geomelry only half aeroplane is
considered in the computational domain. The boundary definition consists of 29
surface components and 57 curve components. The outer boundary is a circular
cylinder of radius equal to 30 times the mean chord of the wing. The discretisation of
the surface has 13,030 triangles and the computational domain has been discretised
using 194,307 tetrahedra. An attempt has been made to generate a mesh which has
nearly uniform element size in the vicinity of the aeroplane and increases rapidly
away from it. An inviscid flow computation was performed for a free stream Mach
number of 0.3 and an angle of attack of 5% Figure 3.16(b) shows two views of the
mesh and the computed pressure contours on the surface of the complete aircraft. The
computed solution was obtained after 700 timesteps of the explicit algorithm
described in section 1.3. This results were not fully converged and are only
preliminary.

F-18 fighter configuration

Here the flow past an F-18 fighter aircraft, including the modelling of the engine
effects is considered. The free stream Mach for the computation is 0.9 and the angle
of attack is 3°. The simulation of the effects is accomplished by specifying the Mach
number at the engine inlet to be 0.4. The flow conditions at the outlet are those
corresponding to a jet pressure ratio of 3 in the engine. Due to the symmetry of the
geometry only half of the domain is considered. The geometry of the boundary of the
computational domain is defined by means of 37 surface components and 87 curve
components. The spline definition of the aircraft surface and the engine ducts is
represented in figure 3.17(a). The outer boundary is a rectangular box which is
situated at an approximate distance of 15 wing chords from the aircraft. The initial
generation contains 30,743 triangular faces. The triangulation of the surface of the
full F-18 is depicted in figures 3.17(b), in which the engine ducts are shown
detached, and 3.17(c). The element size is almost uniform in the neighbourhood of
the aircraft and increases away from it. The generated mesh for half of the domain
consists of 451,641 tetrahedral elements and 84,827 points. The solution on this
mesh was computed using 3,500 explicit timesteps. It required a total CPU time of 6
hours on a single processor of a Cray 2. The pressure solution on the surface of the
aircraft is shown in figure 3.17(d). Some of the features expecled in such a flow
such as, for instance, the canopy and wing shocks can be appreciated.

Falcon aeroplane

In this section we consider the flow past a two engine Falcon aeroplane. The geomelry
definition which required 24 surface components and 52 curve components, is
displayed in figure 3.18(a). The pylons and nacelles are included in the model and
flow through the interior of the nacelles has been allowed in the numerical
simulation. No engine effects are considered. In this example an attempt has been



(a)

0.3, a=5%)
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Figure 3.16 Boeing 747 in landing configuration (M

(a) Geometry definition - aircraft surface patches

(b) Two views of the mesh and pressure contours on the surface.
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Figure 3.17 Flow past an F-18 fighter configuration (M_=0.9, 0=39)

(a) Geometry definition - aircraft surface patches
(b) Surface triangulation showing engine ducls
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Figure 3.17 Flow past an F-18 fighter configuration (M_=0.9, a=3% (continuation)
{c) Triangulation of the F-18 surface
{d) Computed pressure solution
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Figure 3.18 Two engine falcon aircraft (M.

(a) Geometry definition.
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Figure 3.18 Two engine falcon aircraft (M.=0.85, =29 (continuation)

(b) Triangulation of the aeroplane surface and plane of symmetry
(c) Surtace triangulation for the complete aeroplane
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(d) Computed velocity vectors on the surface
{e) Computed surface pressure contours



made to produce a mesh which has increased resolution in those regions where high
gradients in the solution can be expected e.g. leading/trailing edges, nose eic. This can
be appreciated in figure 3.18(b) which shows the generated triangulation on the
surface of the aeroplane and on the plane of symmetry. A view of the surface mesh,
which contains 30,628 triangles for the complete aeroplane, is displayed in figure
3.18(c). The volume surrounding the aeroplane was discretised using 720,859
tetrahedra and 133,080 points. The generation of the mesh was performed on a Cray
YMP machine and required approximately two hours of CPU time using a single
processor. A flow simulation of steady state flight at a free stream Mach number of
0.85 and an angle of attack of 2° was performed. The flow simulation needed about 8
and a halt hours of CPU time on a Cray 2 machine. The velocity vectors on the surface
of the complete aeroplane are displayed in figure 3.18(d). The pressure contours on
the surface of the aircraft are depicted in figure 3.18(e). The solution is rather
oscillatory. This may indicate that the solution is not fully converged yet. The
formation of a lambda shock pattern on the wing and the shock structure on the
pylons and nacelles can be observed.
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4. DATA STRUCTURES
this section has been written in collaboration with

J. Bonet
institute for Numerical Methods in Engineering
University College Swansea
SWANSEA SA2 8PP, UK

From the previous section it is apparent that a successful implementation of the
presented algorithm will require the use of data structures which enable certain
sorting and searching operations to be performed efficiently. For instance, the
generation front will require a data structure which allows for the efficient
insertion/deletion of sides/faces and which also allows for the efficient identification
of the sides/faces which intersect with a prescribed region in space.

The problem of determining the members of a set of n points which lie inside a
prescribed subregion of an N dimensional space is known as geometric searching.
Several algorithms have been proposed {37-40] which solve the above or equivalent
problems with a computational expense proportional to log(n). The problem
complexity increases considerably when, instead of considering points, one deals
with finite size objects such line segments, triangles or tetrahedra. A common
problem encountered here, namely geometric intersection, consists of finding the
objects which overlap a certain subregion of the space being considered. Algorithms
for solving this problem in two dimensions exist [41] and have been applied in
determining the intersection between geometrical objects in the plane. To our
knowledge, the only algorithm capable of solving this problem in three dimensions is
based on the use of the alternate digital tree [42]. The particular application which
motivated the development of this data structure was the implementation of the mesh
generation algorithm described in the previous section.

In what follows, we shall describe an algorithm and associated data structure, called
the alternating digital tree (ADT), which allows for the efficient solution of the
geometric searching problem. It naturally offers the possibility of inserting and
removing points and optimally searching for the points contained inside a given
region. It is applicable to any number of dimensions, and is a natural extension of the
so called digital tree search technique which is exhauslively in [43] for one
dimensional problems. A procedure which allows treaiment of any geometrical object
in an N dimensional space as a point in a 2N dirmensional space will be introduced;
thereby allowing the proposed technique to be employed for the solution of geometric
intersection problems.

4.1 Binary tree structures
Binary trees provide the basis for several searching algorithms, including the one to
be presented here. It is therefore necessary to introduce some basic concepts and

terminology related to binary tree structures. More detailed expositions can be found
in [41,44]. .
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Figure 4.1 A simple binary tree and its storage in computer memory.
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Figure 4.2  Deletion process.
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Delinil | Terminoloay

Tree structures provide a svstematic way of storing a collection of data items which
enables not only a quick access to the information stored, but also frequeny insertions
and deletions of items. This degree of flexibility requires the storage of daja items in
non-sequential locations of the computer memory. As figure 4.1a illustrates, to
achieve this, each data item is extended by the addition of two integer valyes, known
as the left and right links, and stored in what is known as a node of the tree. Each
added link can either be equal to zero or equal to the position in memory where
another node of the tree can be found. Hence, from one node of the tree it is possible
to reach at most two other nodes. Moreover, in order to ensure that every node can be
reached, these links must be such that for each node except one, known as the root,
there is one and only one link pointing at it. This definition establishes a hierarchy of
nodes: the root at the top level of the hierarchy points at 0, 1 or 2 nodes at the next
level; each of these in turn points at other 0, 1 or 2 nodes at the next level of the
hierarchy; and so forth. This hierarchical structure inspires the graphical
representation shown in figure 4.1b for a simple tree comprising only eight nodes
{A,B,C,DE F G,H).

Genealogical terms are normally used to describe the relative position of nodes in a
tree: when a node points at a second node, the former is called the father of the latter,
and this the son of the former node. A node without! sons, that is, with both links
blank, is called a terminal node, and the only node without a father is the root (node A
in figure 4.1b). Given a node, the set of nodes formed by itself together with all its
descendants constitutes a subtree of the main tree. For instance, in figure 4.1b the
trees {C, D, E, F, G, H} and {E, G, H} are subtrees of the main tree rooted at C and E
respeclively.

Tree Traversal

To retrieve information stored in a given node requires knowledge of its location in
memory, which is kept by its father. Hence, a node in the tree can only be examined
or visited if all its anceslors are visited first. However, it is possible to
systematically examine each node in such a way that every node is visiled exactly
once. Such an operation is known as traversing the tree and provides the basis for the
searching methods discussed below. Although several algorithms can be found in the
literature to traverse a binary tree [44], allention will be centred here on the so-
called preorder traversal method. This technique is embodied in the following three
steps:

1. Visit the root of the current subtree
2. If the left link of the root is nct zero then traverse the left subtree.
3. 1f the right link of the root is not zero then traverse the right subtree.

The procedure determined by these three steps is clearly recursive, that is, steps 2
and 3 invoke again the algorithm which they define. In order to illustrate this
process, consider again the tree shown in figure 4.1b: for this tree, the repeated
application of the above algorithm yields the following sequence:

1. Traverse the tree (A, B, C, D, E, F, G, H}
1.1. Visit A
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1.2. Traverse the lree {B)
1.2.1. Visit B
1.2.2. Skip
1.2.3. Skip
1.3. Traverse the tree {C, D, E, F, G, H}
1.3.1. Visit C
1.3.2. Traverse the tree (D, F)
1.3.2.1. VisitD
1.3.2.2. Traverse the tree {F)
1.3.2.2.1 Visit F
1.3.2.2.2 Skip
1.3.2.2.3 Skip
1.3.2.3 Skip
1.3.3. Traverse the tree {E, G, H)
1.3.3.1. VisitE
1.3.3.2. Traverse the tree (G}
1.3.3.2.1 VisitG
1.3.3.2.2 Skip
1.3.3.2.3 Skip
1.3.3.3. Traverse the tree {H}
1.3.3.3.1 VisitH
1.3.3.3.2 Skip
1.3.3.3.3 Skip

Thus, the nodes of the tree in figure 4.1b in preorder are A, B, C, D, F, E, G and H.

We notice in the above algorithm that, before moving on to traverse the left subtree
- step 2 in the previous algorithm - it is necessary to store the value of the right
link, that is, the address of the right son, in order to enable the subsequent traversal
of the right subtree. Moreover, whilst traversing the left subtree it is likely that
additional right links will have to be stored. In fact, a list containing the addresses of
all right subtrees encountered along the way which are yet to be traversed, must be
kept and has to be continuously updated as follows. After visiting each node, the right
link, if different from zero, is added to the list and if the left link is not zero the left
subtree is traversed. When a zero left link is encountered, the last right link
inserted in the list is retrieved, as well as removed, from the list and the subtree
rooted at this address is traversed.

This type of list, in which items are inserted one by one and extracted, also one at a
time, in the reverse order, is known as a stack [44]). A stack consists of a linear
array, or vector, together with an integer variable to record the number of items in
the array. This variable, being initially zero, is increased by one every time an item
is added to the stack and decreased by one when an item is extracted from it.

With the help of a stack, any recursive algorithm can be implemented without the
need to use recursive routines. For instance, a non-recursive implementation of the
traversal algorithm given above can be symbolically expressed as:

0.a Setroot_address = address of the root node
0.b Setstack size = 0 '
1. Visit the node stored at root address
2. lright link = 0 then:
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Setstack _size = stack size +1
Setstack (stack size) = right link
endif
3a. /fleft 1ink = 0 then:
Setroot _address = left link
gotot
endif
3b. Ifieft 1link = 0 then:
If stack_size = 0 then:

Set root _address = stack(stack_size)
Setstack_size = stack size - 1
gotol
endif
endif
If stack size = 0 - {min he pr

Inserling and Deleling nodes

In order to add a new data item 1o a binary tree, a node containing the new item of
information must be created and stored in a convenient memory location. The left and
right links of this node are set to zero. If the current tree is empty, the new node
becomas the rool of the tree, otherwise the node must be inserted or linked to the
existing tree. To achieve this, the tree is followed downwards, starting from the root
and jumping from father to son, until a blank link is found. This link is then set to
the memory position of the new node. When moving down the tree, a criterion must
b provided at each node to chose between the left or right branches. This criterion
determines the final position in the tree of the new node and, consequently, the shape
of the tne itself.

Deleting a node from a binary tree is a straightforward operation if the undesired
node ia a terminal node; changing to zero the corresponding link of its father
effrctively ‘prunes’ the node from the tree and renders the memory occupied by il
available for future uses. In the case of an intermediate node, the process becomes
slightly more complicated since a gap can not be left in the tree. To overcome this
problem, the unwanted node is replaced by a terminal node chosen from among ils
descendants. This operation can be carried out by modifying the links to suit the new
structure of the tree and without moving the nodes from their memory positions.
Figures 4 2a and 4.2b illustrate the deletion of node C from the tree shown in figures
4.1a and 4.1b and its replacement by node H.

If the application at hand demands frequent deletion and insertion, a memory book
keeping system is necessary for the efficient implementation of tree structures. This
is required so that new nodes can be placed in the memory space released by the
delation of previous nodes. This problem can be solved by using a linked list
sttucthire 1o record all the available memory spaces. A linked list is a data structure
that differs from the binary tree data structure described above in that every node
has always only one link pointing at another node, and every node has always one link
pointing At it There are two exceptions, which are the head and the end nodes. The
head 15 a node with no link pointing at it - the address of which is kept separately -
and the and is a node with a blank link.

As shown in figure 4.3 the two data structures, binary tree and linked list, are

updated simultaneously. Initially, the available memory is partitioned into cells of
the correct size fo store tree nodes. These cells, which contain no relevant
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information other than a single link, are then joined together to form a linked list.
Every time a node needs to be inserted into the tree, the memory space required by
this new Iree node is generated by removing a node from the list (see figure 4.3b).
Similarly, when a node is deleted from the tree it is added to the list (see figure
4.3c). Inserting and deleting nodes in the list always takes place at the head. To
insert a node into the list, the link of the new node is set equal to the address of the
head and the inserted node becomes the new head of the list. The deletion of the head
node can be done by simply allowing its link to be the new head.

4.2 The Alternating Digital Tree

Consider a set of n points in a N dimensional space (RN ) and assume for simplicity
that the coordinate values of their position vectors {x, X ... X»}, after adequate
scaling, vary within the interval [0,1). The aim of geometric searching algorithms
is to select from this set those points that lie inside a given subregion of the space. To
facilitate their representation, only rectangular - or ‘hyper-rectangular’ - regions
will be considered, thereby allowing their definition in terms of the scaled
coordinates of the lower and upper vertices as (g, h).

Comparing the coordinates of each point k with the vertex coordinates of a given
subregion to check whether the condition a; < xX; <b, is satlisfied fori =1, 2 ... N,
would render the cost of the searching operation proportional to the number of points
n. This computational expense, however, can be substantially reduced by storing the
points in a binary tree, in such a way that the structure of the tree reflects the
positions of the points in space. There exist several well known algorithms that will
accomplish this effect for one dimensional problems; the most popular are the
binary search tree and digital tree methods [41,43]. Binary search trees have been
extended to N dimensional problems in [45], but the resulting tree structure, known
ad N-d trees, do not allow the efficient deletion of nodes. The algorithm presented
here is a natural extension of the one dimensional digital tree algorithm and
overcomes the difficulties encountered in N-d trees.

finilion_an i rti

Broadly speaking, an alternating digital tree can be defined as a binary tree in which
a set of n points are stored following certain geometrical criteria. These criteria are
based on the similarities arising between the hierarchical and parental structure of
a binary tree and a recursive bisection process: each node in the tree has two sons,
likewise a bisection process divides a given region into two smaller subregions.
Consequently, it is possible to establish an association between tree nodes and
subregions of the unit hypercube as follows: the root represents the unit hypercube
itself; this region is now bisected across the x! axis and the region for which 0 < x' <
0.5 is assigned to the left son and the region for which 0.5 < x! < 1 is assigned to the
right son; at each of these nodes the process is repeated across the x2 direction as
shown in figure 4.4, In a two dimensional space this process can be repeated
indefinitely by chosing x! and x2 directions in alternating order; similarly, in a
general N dimensional space, the process can be continued by choosing directions x?,
x2, ... xN in cyclic order.

Generally, if a node k at the hierarchy level m - the root being level 0 - represents
a region (g, di), the subregions associaled to its left and right sons, (¢, diy) and
(Ckr. die) resuit from the bisection of (ck, d«) by a plane normal to the j-th
coordinate axis, where j is chosen cyclically from the N space directions as:
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j = 1 + mod(m,N) (4.1)

and mod(m,N) denoles the remainder of the quotient of m over N. Hence (g, dw) and
(Ck» di,) are obtained as:

cu' = ¢, di = d forizjand ¢l = cl, did = ;’ (e + du) (4.2a)

Cui = Cy Dy =0l fori=jand ¢ = —12— (cid + dyi), dygil = dy (4.2b)

This correlation between nodes and subdivisions of the unit hypercube allows an ADT
to be further defined by imposing that each point in the tree should lie inside the
region corresponding to the node where it is stored. Consequently, if node k of an ADT
struclure contains a point with coordinates x4, the following condition must be
satisfied:

okl < il < di! fori=12 . N (4.3)

Due to this additional requirement there exists only one possible way in which a new
point can be inserted in the tree. As discussed in the previous section the tree is
followed downwards until an unfilled position where the node can be placed is found.
During this process, however, left or right branches are now chosen according to
whether the new point lies inside the region related to the left or right sons, thereby
ensuring that condition (4.3) is satisfied.

Given a predetermined set of n points, an ADT structure can be built by placing
anyone point at the root and then inserting the remaining points in consecutive order
according 1o the algorithm described above. This is illustrated in figure 4.5 for a set
of 5 points {AB,C,D,E}. The shape of the tree obtained in this way depends mainly on
the spatial distribution of the points and somewhat on the order in which the points
were inserted. The cost of operations like node insertion/deletion and geometric
searching depends strongly on the shape of the tree; generally poor performances are
to be expected from highly degenerated trees (see figure 4.6), whereas well balanced
trees (see figure 4.7), as those obtained for fairly uniform distributions of poinis,
will result in substantial reductions of the searching cosl. In these cases the average
number of levels in the tree, and therefore the average cost of inserting a new point,
becomes proportional to log(n); clearly a considerable cost if compared with the cost
of storing the points in a sequential list, but fully justifiable in view of the reduction
in searching costs that ADT structures will provide.

Geomelric searching

Consider now a set of points stored in an ADT structure. The fact that condition (4.3)
is satisfied by every point provides the key to the efficient solution of a geometric
searching problem. To illustrate this, note first that the recursive structure of the
bisection process described above implies that the region related to a given node k
contains all the subregions related to nodes descending from k; consequently, all
points stored in these nodes must also lie inside the region represented by node k. For
instance, all points in the ADT structure are stored in nodes descended from the root
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Figure 4.6 Degenera ted trees.

Figure 4.7 Well balanced tree.
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and, clearly, all of them lie inside the unit hypercube - the region associated with
the root. Analogously, the complete set of points stored in any subtree is inside the
region represented by the root of the subtree.

This feature can be effectively used to reduce the cost of a geometric searching
process by checking, at any node k, the intersection between the searching range (a,
b) and the region represented by node k, namely (gx, di). If these two regions fail to
overlap, then the complete set of points stored in the subtree rooted at k can be
disregarded from the search, thus avoiding the need to examine the coordinates of
every single point.

Consequently, a systematic procedure to select the points that lie inside a given
searching range (@,b) can be derived from the traversal algorithm previously
presented. Now the generic operation 'visit the root' can be re-interpreted as
checking whether the point stored in the root falls inside the searching range.
Additionally, the left and right subtrees need to be traversed only if the regions
associated with their respective root nodes intersect with the range. Accordingly, a
geometric searching algorithm emerges in a recursive form as:

1. Check whether the coordinates of the node stored in the rootl, say xk. are
inside (a, b) i.e. check whether al < x i < bl fori=12 . N.

2. If the left link of the root is not zero and the region (Cw, di)) overlaps with
(@, b)ie ifdy > a andcy < bifori=12 . N, search the left subtree.

3. If the right link of the root is not zero and the region (ckr, dkr) overlaps
with (3. b) i.e. ifd,’ > alandc, < bifori=12 . N,search the right
subtree.

In order to illustrate this process, consider the set of points and the searching range
shown in figure 8a and the corresponding alternating digital tree depicted in figure
8b. For this simple example, the algorithm given above results in the following
sequence of sleps:

Search the tree {A,B,C,D,E,F,G H}:

1. Check it @ < xp'< bifori= 1,2
2. Since dg' > a' and cg' < bl search the tree {B,C,D,E}):
2.1. Check if a' < xg' < bl
2.2. Since d¢' 2 a' and c¢ < b search the tree {C,E):
2.2.1. Check if a' < xc' < b
2.2.2. Skip (left link is zero)
2.2.3. Skip (cg' > b')
2.3. Skip (cp? > b?)
3. Skip (ce! > bY)

Again a 'non-recursive’ implementation of this algorithm can be achieved using a
stack in a very similar way to that previously described for the iraversal algorithm.
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Figure 4.8  Searching problem in R2
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Figure 4.9 Definition of coordinate limits for triangular elements and straight
line segments.
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Note that, with this technique, only the coordinates of points A,B and C are actually
examined, the rest being immediately disregarded in view of their position in the
tree. In general, only those points stored in nodes with associated regions
overlapping (a. b) will be checked during the searching process.

4.3 Geometric Intersection

Geometrical intersection problems can be found in many applications; for instance, a
common problem that may emerge in contact algorithms [46), hidden line removal
applications or in the advancing front mesh generation algorithm presented in
section 3, is to determine from a set of three noded triangular elements those which
intersect with a given line segment. Similar problems, involving other geometrical
objects, are encountered in a wide range of geomelrical applications. in general, a
geomelric intersection problem consists of finding from a set of geometrical objects
those which intersect with a given object. |f every one-lo-one intersection is
investigated, the solution of these problems can become very expensive, especially
when complex objects such as curves or surfaces are invoived. Fortunately, many of
these one-to-one intersections can be quickly discarded by means of a simple
comparison between the coordinate limits of every given pair of objects. For
instance, a triangle with x-coordinate varying from 0.5 and 0.7 cannot intersect
with a segment with x-coordinate ranging from 0.1 to 0.3. Generally, the
intersection between two objects in the N dimensional Euclidean space, requires each
of the N pairs of coordinate ranges to overlap. Consider for instance the intersection
problem between triangular facets and a target straight line segment in R3; then, it
(Xx min: Xk max) are the coordinate limits of element k and (Xo min, Xo.max) are the
lower and upper limits of the target segment (see figure 4.9), an important step
towards the solution of a geometric intersection problem is to select those which
satisfy the inequality:

Xk,min' < XO’max'

fori=12..N (4.4)
xk,max' 2 xO.min'

The cost of checking condition (4.4) for every element grows proportionally to n,
and for very numerous sets may become prohibitive. This cost, however, can be
substantially reduced by using a simple device whereby the process of selecting those
elements which salisfy condition (4.4) can be interpreted as a geometric searching
problem. Additionally, since the number of elements that salisfy condition (4.4) will
normally be much smaller than n, the cost of determining which of these intersects
with the target segment becomes affordable.

In order 1o interpret condition (4.4) as a geomeiric searching problem, it is first
convenient 1o assume that all the elements to be considered lie inside a unit
hypercube - a requirement that can be easily satisfied through adequate scaling of
the coordinate values. Consequently, condition (4.4) can be re-written as:

0< Xk,min‘ < xO,max‘

0< xk'minN < xO.maxN

79



(4.5)

Xo.min' < Ximax' <1

xO.minN < xk,maxN <1

Consider now a given object k in RN with coordinate limits Xx min, and Xx max;
combining this two sets of coordinate values, it is possible fo view an object k in RN
as a point in R2N with coordinates ! fori = 1,2 ... 2N defined as (see figure 4.10):

T
Xi= [ xk,min1c ce. xk,minN- xk,max1v o xk.maxN] (4.6)

Using this representation of a given object k, condition (4.5) becomes simply:

ai<xi<h fori=12 .. 2N (4.7)

where g and b can be interpreted as the lower and upper vertices of a ‘hyper-
rectangular’ region in R2N and, recalling (4.5), their components can be obtained in
terms of the coordinate limits of the target object (see figure 4.11) as:

1 N v

a=[0,. .. 0, Xo.max » » - + X0,max ] (483)
T

b= [ xO.mir\1v e XO,minNr 1, ... 1] (48b)

Consequently, the problem of finding which objects in RN satisfy condition (4.4)
becomes equivalent to a geometric searching problem in RN i.e. obtaining the points
x. which lie inside the region limited by a and b. Once this subgroup of elements has
been selected, the intersection of each one of them with the target object must be
checked to complete the solution of the geometric intersection problem.

4.4. The use of the ADT for mesh generation

It is obvious from the advancing front algorithm described in section 3 that
operations such as searching for the points inside a certain region of the space and
determining intersections between geometrical objects - in this case sides and faces
- will be performed very frequently. The complexity of the problem is increased by
the fact that the set of faces forming the generation front changes continuously as new
faces need 1o be inserted and deleted during the process. Clearly, for meshes
consisting of a large number of elements the cost of performing this operations can
be very important.

A successful implementation of the above algorithms has been accomplished by
making exlensive use of the ADT data structure. For instance, the algorithm of
seclion 3.5 for tetrahedra generation employs two tree structures; one for the faces
in the front and the other for the sides defined by the intersection between each pair
of faces in the front (see figure 3.11). This combination allows a high degree of
flexibility and the operations of insertion, deletion, geometric searching and
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geometric intersection can be performed optimally. The overali computationai
performance of the algorithm is demonstrated by generating tetrahedral meshes,
using the above method, for a unit cube (see figure 4.12). Different numbers of
elements have been obtained by varying the mesh size. In figure 4.12 the computer
time required on a VAX 8700 machine has been plotted against the number NE of
elements generated. It can be observed that a typical NE'log(NE) behaviour is
attained. Using this approach meshes containing up to one million elements have been
generated and no degradation in the performance has been detected.



5. ADAPTIVITY FOR STEADY STATE PROBLEMS

The procedures described above allow for the computation of an initial approximation
to the steady state solution of a given problem. This approximation can generally be
improved by adapting the mesh in some manner. Here, we follow the approach of
using the computed solution to predict the desired characteristics (i. e. element size
and shape) for a new, adapted mesh. The ultimate aim of the adaptation procedure is
to predict the characteristics of the optimal mesh. This can be defined as the mesh in
which the number of degrees of freedom required to achieve a specified level of
accuracy is a minimum. Alternatively, it can be interpreted as the mesh in which a
given number of degrees of freedom are distributed in such a manner that the highest
possible solution accuracy is achieved. In practical situations however, there are
several factors which make the achievement of such optimal meshes extremely
difficult. Some of these factors are:

i) The concept of optimality is intimately linked to that of accuracy, which is not
uniquely defined. Hence optimality of a mesh needs to be defined with respect to a
given norm or measure of the error. An additional inconvenience related to the
measure of accuracy, in the present context, arises from the fact that we are
attempting to solve a coupled set of non linear partial differential equations and,
therefore, a rigorous measure of the error should involve all the relevant
variables.

ii) For linear elliptic operators, as we have shown in Section 1, Galerkin finite
element algorithms are readily derived which guarantee that the approximation
obtained is the most accurate amongst all the possible approximations within the
trial space of functions. Here, accuracy is defined with respect to a norm implied
by the operator itself (the energy norm). For the Euler equations, however, such
an energy norm does not exist and no numerical schemes are known which
possess this optimality property.

iii) This best approximation property means that the error of the computed
solution, measured in the energy norm, is bounded above by that of the exact
interpolant. i.e. the approximation in the space of current trial functions which
has exact nodal values. Using results of interpolation theory [47], it is then
possible to produce rigorous bounds on the error of the numerical
approximation. These resuits are based on certain reqularity assumplions on the
solution, which for the Euler equations will be invalid in the vicinity of
discontinuities in the flow,

iv) Finally, the error estimates produced are based on the computed solution. As
this is only an approximate solution, such error estimates will only be as good as
the computed solution. Tihis means that, even in the best situation, the optimal
mesh will only be achieved in the asymptotic limit. i.e. when the solution is so
good that the computed error becomes very reliable.

In view of these observations and limitations, we have made an attempt to develop a
heuristic adaptive strategy. This sirategy uses error eslimates which are based upon
concepts from interpolation theory. The possible presence of discontinuities in the
solution is taken into account and, in addition, the procedure provides information
about any directionality which may be present in the solution. The advantages of
using directional error indicalors become apparent when we consider the nature of
the solutions to be computed involving flows with shocks, contact discontinuities etc.
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Such features can be most economically represented on meshes which are stretched
in appropriate directions. Although, these error estimates have no associated
mathematical rigour, considerable success has been achieved with their use in
practical situations.

The computed error, estimated from the current solution, is transformed into a
spalial distribution of ‘optimal’ mesh spacings which are interpolated using the
current mesh. The current mesh is then modified with the objective of meeting these
‘optimal’ distribution of mesh characteristics as closely as possible. Three
alternative procedures will be discussed here for performing the mesh adaption. The
resulting mesh is employed to produce a new solution and this procedure can repeated
several times until the user is satisfied with the quality of the computed solution.

5.1 Error indicator in 1D.

The development of a method for error indication is considerably simplified if we
restrict consideration to problems involving a single scalar variable. For this
reason, when solving the Euler equations, a key variable is identified and then the
mesh adaptation is based on an error analysis for that variable alone. The choice of
the best variable to use as a key variable remains an open question, but the the Mach
number has been adopted for the computations reported in these notes.

Consider first the one dimensional situation in which the exact values of the key
variable o are approximated by a piecewise linear function 6. The error E is then
defined as

E =o(x')-&(x") (6.1)

We note here that if the exact solution is a linear function of x' then the error will
vanish. This is because our approximation has been obtained using piecewise linear
finite element shape functions. Moreover, if the exact solution is not linear, but is
smooth, then it can be represented, to any order of precision, using polynomial shape
functions.

To a first order of approximation, the error E can be evaluated as the difference

between a quadratic finite element solution & and the linear computed solution. To
obtain a piecewise quadratic approximation one could obviously solve a new problem
using quadratic shape functions. This procedure however, although possible, is not
advisable as it would be even more costly than the original computation. An
alternative approach for estimaling a quadratic approximation from the linear finite
element solution is therefore employed. Assuming that the nodal values of the
quadratic and linear approximations coincide i.e. the nodal values of E are zero, a
quadratic solution can be constructed on each element, once the value of the second
derivative is known. Thus the variation of the error E within an element e can be
expressed as

428
dx'2

e

1
Ee’EC(he’C) (52)

where { denotes a local element coordinate and h, denotes the element length. A
procedure for estimating the second derivative of a piecewise linear function is
described below.
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The root mean square value EoRMS of this error over the element can be computed as

he 12
Eg2 1 d2%a
EAMS _ f 24 - ——h 5.3
he C \/T‘ 2 0 e dx12 ( )
0 e
where | . | stands for absolute value.

We define the ‘optimal' mesh, for a given degree of accuracy, as the mesh in which
this root mean square error is equal over each element. In the present context, this
requirement may be regarded as being somewhat arbitrary. However, it has been
shown [48] that the requirement of equidistribution of the error leads fo optimal
results when applied to certain elliptic problems. This requirement is therefore
written as

—'=C (5.4)

where C denotes a positive constant.

Finally, the requirement of equation (5.4) suggests that the ‘optimal’ spacing § on
the new adapted mesh should be computed according o

—5i =C (5.5)

5.2 Recovery of the second derivatives.

The first derivative of the computed solution on a mesh of linear elements will be
piecewise constant and discontinuous across elements. Therefore, straightforward
differentiation of & leads to a second derivative which is zero inside each element and
is not defined at the nodes. However, by using a recovery process, based upon a
variational or weighted residual statement [12], it is possible to compute nodal
values of the second derivatives from element values of the first derivatives of &.

To illustrate this process, consider a one dimensional domain 0 < x' < L which has
been discrelised inlo (n-1) linear two noded finite elements. The piecewise linear
distribution of the computed solution & is expressed as

n
6= Y N,é, (5.6)
J=1

where N, is the standard linear finite element shape function [12] associated 1o node
J. Similarly, a piecewise linear approximation to the distribution of the second
derivative, which we seek to determine, can be written as
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s = d2a

—_— N —_

dx'2 J}_;, Y dx12
- J

(5.7)

The nodal values of the second derivative may be computed from the approximate
variational requirement that

n dN
JE jNJ Nk dQ ) j( z dx‘ k) dx,‘( dQ
do do
(axt Nidxtzo + (47 Nidet- K= 1, .0 (5.8)

The values of the derivatives at the two end points can be inserted, if known, or can
be taken to be equal to the constant value of the derivative in the adjacent elements.
The resulting set of algebraic equations can be solved, in a few iterations, by using a
Jacobi procedure [16] or alternatively, the consistent mass matrix appearing on the
left hand side of equation (5.7) can be lumped, thus yielding a diagonal system of
equations. Numerical resulls obtained to date do not indicale any cignificant
differences in the meshes produced by using these two approaches.

5.3 Extension to muitidimensions

Following the process described above, nodal values of the second derivative can be
oblained from the approximate solution on the current mesh. The use of expression
(5.5) then yields direclly a nodal value of the ‘optimal’ spacing for the new mesh.

Expression (5.5) can be direclly extended to the N dimensional case by writing the
quadratic form

(z mi Bip! ]= (5.9)

ij=1

where J§ is an arbitrary unit vector, 84 is the spacing along the direction of B, and mil
are the components of a NxN symmetric matrix of second derivatives

923
mii 8X'~8—;<| (5.10)

These derivatives are computed, at each node of the current mesh, by using the N
dimensional equivalent of the procedure presented in the previous section. The
meaning ol equation (5.9) is graphically illustrated in figure 5.1 which shows how
the value of the spacing in the [ direction can be obtained as the distance from the
origin to the point of intersection of the vector § with the surface of an ellipsoid. The
directions and lengths of the axes of the ellipsoid are the principal directions and
eigenvalues of the matrix m respectively.
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Several alternative procedures exist for modifying an existing mesh in such a way
that the requirement expressed by equation (5.8) is more closely satisfied. Three
such methods will be described here. In the first procedure, called mesh enrichment,
the nodes of the current mesh are kept fixed but some new nodes/elements are
created. In the second procedure, referred to as mesh movement, the total number of
elements and nodes remains fixed but their position is altered. Finally, in the
adaptive remeshing algorithm, the mesh adaption is accomplished by completely
regenerating a new mesh using the mesh generation algorithm presented in section 3.

5.4 Mesh enrichment

In order to adapt a mesh using mesh enrichment, a sweep over all the sides in the
mesh is made and the ‘optimal' spacing in the direclion of each side is computed
according 1o expression (5.9). For each side, the matrix m is taken 1o be the average
of its value at the two nodes of the side. The enrichment procedure consists of
introducing an additional node for each side for which the calculated spacing Is less
than the length of the side. For interior sides, this additional node is placed at the
mid-point of the side, whereas for boundary sides, it is necessary to refer to the
boundary definition and to ensure that the new node is placed on the true boundary.
When any side is subdivided in this manner, the elements associated with that side
will also need to be subdivided in order to preserve the consistency of the final mesh.
Figure 5.2 illustrates the three possible ways in which this element subdivision
might have to be performed in two dimensions. The number of sides to be refined
depends on the choice of the constant C in equation 5.9. To avoid excessive refinement
in the vicinity of discontinuities, a minimum threshold value for the computed
spacing can be used. When the mesh enrichment procedure has been completed, the
values of the unknowns at the new nodes are linearly interpolated from the original
mesh and the solution algorithm is re-started. This procedure has been successiully
implemented in two and three dimensions and several impressive demonstrations of
the power of this technique have been made. [8,19,49,50).

The application of the enrichment procedure in the solution of a two dimensional
example is illustraled in figure 5.3. The problem solved is a Mach 8.15 flow past a
double ellipse configuration at 30° angle of attack. The initial mesh and two
adaptively enriched meshes are shown tlogether with the computed Mach number
solutions. The application of the enrichment algorithm in three dimensions is shown
in figure 5.4. The inviscid flow past a 30°wedge is solved. The free stream Mach
number is 3. This is a two dimensional problem computed on a three dimensional
mesh. Two views of the initial mesh and solution are shown. A single application of
the enrichment algorithm produces the mesh and solution which are also displayed in
figure 5.4.

It can be observed, from the examples presented, how the quality of the solution is
significantly improved by the application of. the enrichment procedure. The main
drawback of the approach is that the number of elements increases considerably
following each application of the procedure. This means that, in the simulation of
practical three dimensional problems, only a small number of such adaptations can
be contemplated.

5.5 Mesh movement

For the mesh movement alogrithm, the element sides are considered as springs of
prescribed stifiness and the nodes are moved until the spring system is in
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equilibrium. Consider two adjacent nodes J and K as shown in figure 5.5. The force fix
exerled by the spring connecting these two nodes can be taken to be

fik = Cok (L -Ix) (5.11)

where C,x is the sliffness of the spring and r, and [x are the position vectors of
nodes J and K respectively. Assuming that

h=10-nl (5.12)

the adaptation requirement of equation (5.9) will be salisfied if the spring
stiffnesses are defined as

N
2 mingeing (5.13)

=1

CJK =h

Here n,« is the unit vector in the direction of the side joining nodes J and K. For
equilibrium, the sum of spring forces at each node should be equal to zero. The
assembled system can ba brought into equilibrium by simple iteration. In each
iteration, a loop is performed over all the interior nodes and new nodal coordinates
are calculated according to the expression

Sy

Y Cuk Lk
K =1

LNEW = (5.14)

S
Y Ix
K =1

where the summation extends over the number of nodes, S;, which surround node J.
Sufficient convergence is normally achieved after three to five passes through this
procedure.

This lechnique will not necessarily produce meshes of better quality, as badly formed
elements can appear in regions (such as shocks) in which the spring coefficients C
vary rapidly over a short distance. To avoid this problem, the definition of the value
of C given in equation is (5.13) can be replaced by an expression of the form

AC
CyMob = 1+“B**;—%(‘TK* (5.15)

This can be regarded as a blending function definition for the spring stiffnesses and it
has been constructed so as to ensure that, with a suitable choice for the constants A
and B, excessively small or excessively large element sizes are avoided. This, in lurn
means that meshes of acceptable quality will be produced. More sophisticated
procedures for controlling the quality of the mesh during movement can also be
devised [51] and mesh movement algorithms have been successfully used in two and
three dimensional flow simulations on both structured and unstructured meshes
[15.,51.52].
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The mesh movement algorithm described has been applied to the problem of flow past
a double ellipse configuration which has been treated previously. Figure 5.6 shows
the solutions produced following two mesh adaptations. It can be seen that the
improvement obtained after the second adaptation is minor. This is because the
algorithm does not allow for the creation of new nodes and so the quality of the final
solution is very much dependent on the topology of the initial mesh. This is a major
drawback of the mesh movement strategy. A possible remedy to this problem is to
combine mesh enrichment and mesh movement procedures. This is demonstrated in
figure 5.7 which shows the application of the movement procedure to the final
enriched mesh of figure 5.3.

5.6 Adaptive remeshing

The basic idea of the adaptive remeshing technique is to use the computed solution to
provide information on the spatial distribution of the mesh parameters. This
information will be used by the mesh generator described in section 3 to generate a
completely new adapted mesh for the problem under investigation.

The ‘optimal' values for the mesh parameters are calculated at each node of the
current mesh. The directions q;; i=1, ..., N. are taken to be the principal directions of
the matrix m. The corresponding mesh spacings are computed from the eigenvalues
e i=1, .., N, as

& = - for i=1, ., N (5.16)

The spatial distribution of the mesh parameters is defined when a value is specified
for the constant C. The total number of elements in the adapted mesh will depend upon
the choice of this constant. For smooth regions of the flow, this constant will
determine the value of the root mean Square error in the key variable that we are
willing to accept. Therefore this constant should be decreased each time a hew mesh
adaption is performed. On the other hand, solutions of the Euler equations are known
o exhibit discontinuities. At such discontinuities, the root mean square error will
always remain large and therefore a different strategy is needed in the vicinity of
such features.

In the practical implementation of the present method, two threshold values for the
computed spatial distribution of spacing are used: a minimum spacing 8, and a
maximum spacing §,,,.,,, so that

Omin < & < Smax for =1, N (5.17)

The reason for defining the maximum value dmax is 10 account for the possibility of a
vanishing eigenvalue in (5.16) which would render that expression meaningless.
The value of §,,,, is chosen as the spacing which will be used in the regions where the
flow is uniform (the far field, for instance). On the other hand, maximum values of
the second derivatives occur near the discontinuities (if any) of the flow where the
error indicalor will demand that smaller elements are required. By imposing a
minimum value §,, for the mesh size, we atlempt to avoid an excessive
concentration of elements near discontinuities. As the flow algorithm is known to
spread discontinuities over a fixed number of elements (i.e. two or three), Smin iS
therefore set to a value that is considered appropriate to ensure that discontinuities
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are represented to a required accuracy. This treatment also accounts for the presence
of shocks of different strength in which, since the numerical values of the second
derivative are different, equation (5.16) will assign them different mesh spacings
(e.g. larger spacings in the vicinity of weaker shocks).

The total number of elements generated in the new mesh will now depend on the
values selected for C, §,ax, and 8,,,. However, it turns out that this number is
mainly determined by the choice of the constant C, which is somehow arbitrary. The
criterion employed here is to select a value that produces a computationally
affordable number of elements.

The adaptive remeshing strategy presented in this section is illustrated in figure 5.8
by showing the various stages during the adaptation process. Figure 5.8(a) shows the
initial mesh employed for the computation of the supersonic flow past a double
ellipse configuration. The Mach number contours of the solution obtained on the
inital mesh are shown in figure 5.8(b). The flow condilions are a free stream Mach
number of 8.15 and an angle of attack of 30°. The application of expression 5.16 to
the solution obtained produces the distribution of spacing and stretching displayed in
figures 5.8(c) and 5.8(d) respectively. In figure 5.8(c) the contours corresponding
to the value of the minimum spacing occuring in any direction is shown, whereas in
figure 5.9(d) the value of and the direction of streiching is displayed in the form of a
vector field. The magnitude of the vector represents the amount of stretching i.e.
ratio belween maximum and minimum spacings, and the direction of the vector
indicates the direction along which the spacing is maximum. In this example
expression 5.17 has been applied to the computed spacings with values of 8, = 15
and 8o = 0.9. Figures 5.8(e) - 5.8(h) show various stages during the regeneration
process. It can be observed how small elements are generated first as discussed in
section 3.5. The completed mesh is shown in figure 5.8(i) and the solution computed
on this adapted mesh is shown in figure 5.8(j). It can be observed how a very
significant improvement in the solution is obtained using, in this case, a single
adaptation.

Estimating the number of elements to be generated.

The regeneration process uses the current mesh as the background mesh. Such a
background mesh clearly represents accurately the geomelry of the computational
domain. In this case, the number of elements to be generated, denoted by N,, can be
estimaled as follows. Once the values of C, 8§, and §,;, have been selected, the
spatial distribution of mesh parameters §;, q;; i=1. .. N is computed. For each
element of the background mesh, the values of the transformation T is compuled at
the centroid. The transformation is applied to the nodes of the element and its volume
Ve in the normalised space is computed. The number of elements N, is assumed to be
proportional to the total volume in the unstretched space, i.e.

Ny
Ne =x D Ve (5.18)
e=1

where N, is the number of elements in the background mesh and y is a constant. The
value of y is calculated as a statistical average of the values obtained for several
generaled meshes. The calculated value is x = 9. This procedure gives estimates of
the value of Ng with an error of less than 20%, which is accurate enough for most
practical purposes. If the estimated value of Ng is either too big or too small, then
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the value of C is reduced or increased and the process repeated until the value of C
produces a number of elements which is regarded as being computationally
acceplable.

Application examples

Double ellipse - The adaptive remeshing procedure is applied twice to the problem of
flow past a double ellipse. The flow conditions are those previously considered for
this configuration. The inital and two adapled meshes and the solutions for Mach
number are shown in figure 5.9. The characteristics of the meshes employed are
displayed in table 5.1.

Mesh Elements Points &,
1 2027 1110 4.0
2 3557 1864 0.9
3 6403 3294 0.25

Table 5.1 Double ellipse (M..=8.15, a=309): mesh characteristics.

It is observed how the application of the adaptive procedure, when compared to the
enrichment strategy, allows for a larger increase in the resolution at the expense of
a smaller increase on total number of elements. On the other hand the remeshing
procedure does not suffer from the limitations inherent in the mesh movement
algorithm.

Shock inferaction on_a swepl cylinder.- This is a problem of practical interest
because its implications to the design of hypersonic vehicles [53]. The experimental
apparalus and the computational domain adopted are shown diagramatically in figure
5.10(a). The numerical simulation has been carried out for a sweep angle of 159 on
a cylinder of diameter D equal to 3 inches and length L equal to 9 inches. The
undisturbed free stream Mach number is 8.03. The fluid which has been turned by
the shock generator enters the computational domain with a Mach number of 5.26.
The initial mesh and those obtained after two adaplive remeshings and the density
contours distribution are shown in figure 5.10(b). The characteristics of the
meshes are shown in table 5.2.

Mesh Elements Points Smin 6:,,3,
1 51 190 10 041 1.0 1.0
2 100 071 18 660 0.5 3.0

3 171800 31 083 0.18 3.0

Table 5.2 3D Shock interaction on a swept cylinder: mesh characteristics.
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Figure 5.10 Shock interaction on a swept cylinder (M..=8.03, A=15%) (continuation)
(b) Sequence of meshes and density solutions obtained using adaptive remeshing
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Figure 5.11 Generic fighter configuration (M_.=2, a=3.799)

(a) Geometry definition - aircraft surface and outer boundary.
(b) Initial mesh and computed pressure solution in the symmetry plane.
(c) Second mesh and computed pressure solution in the symmetry plane.
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(d) Initial mesh and computed pressure solution.

(e) Second mesh and computed pressure solution.

Figure 5.11 Generic fighter configuration (M.=2, a
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The potential advantages of the adaptive remeshing procedure are clearly illustrated
in this three dimensional example. The final adapted mesh has a resolution of more
than five times that of the inital mesh whereas the total number of degrees of
freedom increases by only a factor of 3.4. The effects of the three dimensional
adaptation are best shown in figure 5.10(c) which shows the cross section through
the meshes half way along the cylinder. Two views of the three dimensional mesh for
the final adaptation together with the solution obtained are shown in figures 5.10(d)
and 5.10(e) respectively.

Generic fighter configuration.- This example concerns the simulation of the flow
past a generic fighter configuration. The generation of the initial mesh for that
problem has been described in section 3.9. The flow conditions considered correspond
lo a free stream Mach number of 2 at an angle of attack of 3.799. The engine inlet is
modelied by prescribing a Mach number of 0.3 within the engine. At the outlet
supersonic flow conditions are assumed. Because of the symmetry of the problem
only half of the domain is modelled. The spline definition of the geometry is shown in
figure 5.11(a) and consists of 23 surface components and 53 curve components. Two
meshes have been employed in an initial demonstration of adaptive remeshing applied
to full aircraft configuration. The inital mesh contains 76,522 tetrahedral elements
with 4,128 triangular faces on the boundary. A preliminary first solution was
computed using 1,500 iterations of the basic explicit scheme. A second mesh was
adaptively generated using the Mach number as the key variable in the error
analysis. The new mesh is formed by 70,125 tetrahedra with 7,262 triangles on the
boundary. It is interesting to notice that the number of elements in the two meshes is
approximately the same whereas the number of faces on the surface has increased.
Moreover, the minimum spacing on the adapted mesh is 3.5 times smaller than the
one on the initial mesh, thus indicating also an increase in the mesh resolution. The
solution on the new mesh was obtained after 2,000 iterations. The meshes and
computed solutions at the plane of symmetry are shown in figures 5.11(b) for the
initial mesh and 5.11(c) for the adapted mesh. The effect of the adaptation in the
vicinity of the engine inlet can be observed. The mesh and solution on the surface of
the aircraft is shown in figure 5.11(d) for the initial mesh and in figure 5.11(e)
for the adapted mesh. In this case the adaptation is very mild and is hardly noticeable.
The main reason for this is that the resolution on the initial grid is rather poor and
some important flow features are not properly captured.
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6.TRANSIENT FLOWS
this section has been written in collaboration with

J. Probert and O. Hassan
Computational Dynamics Research
Innovation Centre, University College Swansea
SWANSEA SA2 8PP, UK

6.1 Transient flows

Solutions of the Euler equations are smooth over large areas of the computational
domain and exhibit large gradients in localised parts of the flow. In transient
simulations, these localised regions will generally move through the computational
domain and may sweep across very large areas e.g. the case of flows involving
propagating shocks. This means that, unless adaptivity is used, a globally fine mesh
will be necessary to provide the required resolution. Thus the use of adaptivity, with
the possibility for local mesh refinement and coarsening, offers the potential for
considerable computational savings. We have already seen that only a few mesh
adaptations are generally needed to obtain a satisfactory solution to a steady problem,
but we can expect that mesh adaptation will have to be performed several thousand
times in a transient flow simulation. Thus any potential computational savings which
appear 1o be offered by the use of adaptivity in this case will only be realised if the
adaptation of the mesh can be performed in an efficient manner. Successful
implementations of adaptivity to the solution of transient problems have already
been made within the context of both structured [54] and unstructured meshes
[55,56].

6.2 Mesh enrichment

An obvious method of achieving mesh adaptation for transient flow simulation is the
extension of the mesh enrichment ideas introduced above for the solution of steady
state problems. An exiremely successful implementation on unstructured triangular
meshes has been made by Lohner [55]. In his method, the grid is automatically
refined and de-refined as necessary according to the results of an error indicating
process. An example [56] of the application of this procedure to shock-bubble
interaction problem is shown in figure 6.1. This problem involves the interaction
between a weak shock, travelling at a Mach number of 1.29 in air, and a bubble of
heavier material (freon). From the figure it can be seen how the shock speed inside
the bubble decreases, owing to the higher density of the freon, whereas the outer
shock bends over. The inner shock focuses at the right hand end of the bubble,
producing a significant over-pressure and intiating a small circular blast wave.

This method has also recently been applied to three dimensional flow simulations
{57], but much less resolution can now achieved, as only a limited number of
refinement levels can be afforded computationally.

6.3 Transient flows involving moving bodies

The complexitly involved in transient flow simulation increases if one considers
problems in which certain boundaries of the computational domain are aliowed to
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move, so that the geometry of the domain changes with time. This means that the
mesh must be modified during the computation in order to accommodate these
geometrical changes. One approach which has proved to be successful for tackling
such problems is the chimera approach, in which each individual geometry
component can have its own associated structured mesh which can move
independently of the other meshes. Three dimensional viscous simulations involving
moving bodies have already been produced by this method [58]. Unstructured meshes
have been applied to the solution of inviscid two dimensional transient flows
involving moving bodies [59,60], using a method which is an extension of the
remeshing procedures presented in section 5.6 and this is the approach that will be
presented here.

We restrict our consideration to two dimensional inviscid flows and note that the
basic variational statement for the problem will need 1o be modified to account for
the fact that the spatial domain Q is varying with time. Suppose that we have the
solution L, at a certain time level t,. We attempt to satisfy the compressible Euler
equations (1.38) over the space-time domain D = (Q), thst< ty,4). To express
this problem in a variational form we need to introduce Suitable trial and weighting
function sets. We assume, for the purposes of this discussion, that the conditions on
the boundary T of Q can be expressed in the form

Uu=0 on I(t) (6.1)
Although such conditions are somewhat unrealistic, the actual boundary conditions
which would need to be applied in the simulation of a given problem can be readily

incorporated by making appropriate modifications to the following analysis. We may
define

T={U|U=Qonr;u=u,,onQatt=t,.}
(6.2)
W={W|W=0o0nr}

and a variational formulation of the problem can be stated as : find Uin T such that

‘n‘1

/ ij[%ﬁ%ﬂ%]dndug (6.3)
tn

for every W in . We will assume that the spatial domain Q has been discretised
using 3 noded linear triangular elements, with interior nodes numbered from 1 to p
and introduce the sets

Tior = { Uipy | Uy = My U +Mp Upv .. 4M, Ups Uy =0 on T Up =Us onQatt=ty)

: (6.4)
‘d(p) = {W(p) IW(p) = a1M1+82M2 +..+apMp s W(p) =0 on r}
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In the approach which is to be followed here, certain nodes in the mesh will be fixed,
while others will move with a prescribed velocity. The shape functions M, are linear

functions of space and time which satisfy
Mu(x.te) = NJ'(x) Ma(xtna1) = N"3 T () (6.5)

where N7 is the standard finite element shape function, defined in section 1.2,
associated to node J at time t,. Working with the function sets defined in equation

(6.4), the Galerkin approximation statement takes the form : find U, in T, such
that

thst

f JMJ[Q%M+8%L:1+8QM]det ) (6.6)
. Q

for J = 1,2,.....p. Considering the first term appearing in this integral, it is possible
to show that

IMJ“MdQ_dJ.M Uy 00 - ijJu‘p,dr fa Upda (6.7)

where y denotes the velocity of the moving nodes. With y,,, = (v,, v,) interpolated
linearly between the nodal values of y, an observer moving with the mesh will not
detect any change in the shape functions i.e.

DM, oM, My oM,

Dt ~at *Vxx*Vrgy =0 (6.8)

where D/Dt denotes differentiation following the moving mesh and so

Jvn My, dr+faa, Uppy dQ = fMJ[a"‘”*"’ a"'a%"’]du (6.9)

Finally, combining equations (6.6), (6.7) and (6.9), the Galerkin approximation
satisfies

'n+1

JMJUxmdQ‘ JMJU#’)dQ "J IMJ[ ax

Qn .y th Q

9’ + aE‘g‘;’ ]dn di

(6.10)

where
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Em* = Epy - vulp) Ew* = Epy - vy Usp) (6.11)

Inserting the assumed form for U, from equation (6.4),

thid

mup"" My, - f fMJ[a%‘f’% a%,;_] da dt  (6.12)
th fol

The integral appearing here can be evaluated by first employing one point integration
in time (att = t,,4») and then using a two-step approximation [18,19]. Artificial
viscosily will again be needed with a scheme of this type and the resolution of the
resulting scheme may be improved by the use of the FCT ideas mentioned in Section
1.3.

6.4 Adaptive remeshing for transient flows involving moving bodies

The method described above, whereby a grid may be adapted by remeshing, is a
natural approach to follow for the simulation of flows involving moving bodies. I
will be assumed that the motion of any moving boundary Is prescribed and the
objeclive is to determine the resulting flow field. The description of an algorithm
which can be devised to advance the solution of equation (6.11) in time can be
written as follows:

1. Generate an initial mesh to represent the computational domain and to
adequately resolve the initial solution.

2. Start the timestep loop

2.1 Advance the solution one timestep

2.2  Update the coordinates of the poinis on the moving boundaries

2.3  Use an error indicator to examine the current solution and define an

‘optimal’ distribution of mesh spacing and stretching

2.4  Compare the current mesh with the ‘optimal' mesh. Delete the
elements whose size and shape is too different from the optimal

2.5  Triangulate the regions where elements have been deleted according to
the new distribution of mesh parameters

2.6 Determine, by interpolation, the flow variables at the new nodes

End the timestep loop

It is apparent that the crucial phase in this process is the mesh adaptation in steps
2.3-2.5. The mechanics of this process is illustrated diagramaltically in figure 6.2.
The success of the procedure depends upon the reliability of the error indicator
which is employed. The indicator of equation (5.9) has again been used for this
application.

Application examples

1D Shock propagation.- The first example considered consists of a two dimensional
simulation of the transient development of the flow in shock tube. The purpose of this
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